From Fedora Project Wiki

(Replace with a deprecation notice and a link to docs.fp.o)
Tag: Replaced
 
(175 intermediate revisions by 47 users not shown)
Line 1: Line 1:
{{autolang|base=yes}}
{{autolang|base=yes}}


== Creating packages HOWTO==
{{admon/important|deprecated|As part of documentation move to docs.fp.o, this page has moved to https://docs.fedoraproject.org/en-US/quick-docs/creating-rpm-packages}}
 
This page describes in detail how to create an RPM package, and in particular, how to create a SPEC file. Unlike other RPM guides, this page explains the specifics for Fedora with links to Fedora-specific guidelines. Since it is maintained through the Fedora Wiki, it is likely to be more up-to-date than other guides. Despite the focus on Fedora, most of this document ''does'' apply to other RPM-based distributions. If you're impatient, you might start by looking at the briefer [[How to create a GNU Hello RPM package]].
 
This page gives some practical warnings on what will or will not work, which may save you ''hours'' of time later. Some topics are not discussed in depth, but links to more detailed documents are provided in these cases.
 
Please note that these are ''not'' the official package guidelines for Fedora, which can be viewed in the [[Packaging:Guidelines|Packaging Guidelines]] and [[Packaging:NamingGuidelines|Package Naming Guidelines]]. Having said that, this page ''should'' be compatible with them.
 
If you plan to create an RPM package for the Fedora repository, follow the procedure for [[Join the package collection maintainers|joining the package collection maintainers]].
 
== Setting up your system and account ==
 
Before you create RPM packages on Fedora, you need to install some core development tools and set up the account(s) you will use. As <code>root</code> user:
 
  # yum install @development-tools
  # yum install fedora-packager
 
You can create a dummy user specifically for creating RPM packages so that a build process gone wrong can't trash your files or send your private keys to the world.
 
{{admon/caution|You should ''never'' create your packages as the root user.}}
 
Create a new user named <code>makerpm</code>, set a password and login as that user:
  # /usr/sbin/useradd makerpm
  # passwd makerpm
 
Once you're logged in as the dummy user, create the required directory structure in your home directory by executing:
  $ rpmdev-setuptree
 
The <code>rpmdev-setuptree</code> program will create the <code>~/rpmbuild</code> directory and a set of subdirectories (e.g. <code>SPECS</code> and <code>BUILD</code>), which you will use for creating your packages. The <code>~/.rpmmacros</code> file is also created, which can be used for setting various options.
 
[[Packaging:Guidelines#Timestamps|The packaging guidelines recommend preserving file timestamps]]; you can make this automatic if you use <code>wget</code> or <code>curl</code> to get the source files. If you use <code>wget</code> to get source files, add the text "<code>timestamping = on</code>" to <code>~/.wgetrc</code>.  If you use <code>curl</code>, add the text "<code>-R</code>" to <code>~/.curlrc</code>.
 
You won't normally need to do these steps again.
 
== The basics of building RPM packages ==
 
To create an RPM package, you will need to create a "<code>.spec</code>" text file that provides information about the software being packaged.  You then run the <code>rpmbuild</code> command on the SPEC file, which will go through a series of steps to produce your packages.
 
Normally, you should place your original (pristine) sources, such as <code>.tar.gz</code> files from the original developers, into the <code>~/rpmbuild/SOURCES</code> directory.  Place your <code>.spec</code> file in the <code>~/rpmbuild/SPECS</code> directory and name it "''NAME''.spec", where ''NAME'' is the base name of the package.  To create both binary and source packages, change directory to <code>~/rpmbuild/SPECS</code> and run:
$ rpmbuild -ba ''NAME''.spec
 
When invoked this way, <code>rpmbuild</code> will read the <code>.spec</code> file and go through in order the stages listed below. Names beginning with <code>%</code> are predefined macros (see the next table down).
 
{|border="1" cellspacing="0"
! Stage !! Reads !! Writes !! Action
|-
|<code>%prep</code>||<code>%_sourcedir</code>||<code>%_builddir</code>||This reads the sources and patches in the source directory <code>%_sourcedir</code>.  It unpackages the sources to a subdirectory underneath the build directory <code>%_builddir</code> and applies the patches.
|-
|<code>%build</code>||<code>%_builddir</code>||<code>%_builddir</code>||This compiles the files underneath the build directory <code>%_builddir</code>.  This is often implemented by running some variation of "<code>./configure && make</code>".
|-
|<code>%check</code>||<code>%_builddir</code>||<code>%_builddir</code>||Check that the software works properly.  This is often implemented by running some variation of "<code>make test</code>".  Many packages don't implement this stage.
|-
|<code>%install</code>||<code>%_builddir</code>||<code>%_buildrootdir</code>||This reads the files underneath the build directory <code>%_builddir</code> and writes to a directory underneath the build root directory <code>%_buildrootdir</code>. The files that are written are the files that are supposed to be installed when the binary package is installed by an end-user.  Beware of the weird terminology: The ''build root directory'' is '''not''' the same as the ''build directory''.  This is often implemented by running "<code>make install</code>".
|-
|<code>bin</code>||<code>%_buildrootdir</code>||<code>%_rpmdir</code>||This reads the files underneath the build root directory <code>%_buildrootdir</code> to create binary RPM packages underneath the RPM directory <code>%_rpmdir</code>.  Inside the RPM directory is a directory for each architecture, and a "<code>noarch</code>" directory for packages that apply to any architecture.  These RPM files are the packages for users to install.
|-
|<code>src</code>||<code>%_sourcedir</code>||<code>%_srcrpmdir</code>||This creates a source RPM package (<code>.src.rpm</code>) inside the source RPM directory <code>%_srcrpmdir</code>.  These files are needed for reviewing and updating packages.
|}
 
<!-- Note: The words "in" and "underneath" in the table above have different meanings.  Given file /a/b/c, c is "underneath" but not "in" a. -->
 
As you can tell, certain directories have certain purposes in <code>rpmbuild</code>.  These are:
{|border="1" cellspacing="0"
! Macro Name !! Name !! Usually !! Purpose
|-
|<code>%_specdir</code>||Specification directory||<code>~/rpmbuild/SPECS</code>||RPM specifications (<code>.spec</code>) files
|-
|<code>%_sourcedir</code>||Source directory||<code>~/rpmbuild/SOURCES</code>||Pristine source package (e.g. tarballs) and patches
|-
|<code>%_builddir</code>||Build directory||<code>~/rpmbuild/BUILD</code>||Source files are unpacked and compiled in a subdirectory underneath this.
|-
|<code>%_buildrootdir</code>||Build root directory||<code>~/rpmbuild/BUILDROOT</code>||Files are installed under here during the <code>%install</code> stage.
|-
|<code>%_rpmdir</code>||Binary RPM directory||<code>~/rpmbuild/RPMS</code>||Binary RPMs are created and stored under here.
|-
|<code>%_srcrpmdir</code>||Source RPM directory||<code>~/rpmbuild/SRPMS</code>||Source RPMs are created and stored here.
|}
 
If a stage fails, look at the output to see ''why'' it falied and change the <code>.spec</code> file (or other input) as needed.
 
== Getting ready to package a particular program ==
 
If there are special programs that are required to build or run the program you are packaging, install those other programs and write down what they are.
 
To package a program for the Fedora repository, you ''must'' package pristine (original) sources, along with the patches and build instructions;
it's ''not'' okay to start with pre-compiled code. Install the file with the original source (usually a <code>.tar.gz</code> file) in the
<code>~/rpmbuild/SOURCES</code> directory (of the RPM building user account).
 
Read through the manual installation instructions for your program. It's often a good idea to do a "dry run" by manually building the program before attempting to do so via RPM, especially if you're unfamiliar with RPM. With a few exceptions, all program binaries and program libraries included in Fedora packages must be built from the source code that is included in the source package.
 
=== Split up the program ===
 
Application source code is often released with the source code of other external libraries "bundled" into them. [[Packaging:No_Bundled_Libraries|Do not bundle external libraries with the main application into a single package]]. Instead, split them up into separate packages.
 
=== Licensing ===
 
Only package software that is legal for you to package.
 
As noted in the [[Packaging/Guidelines#Legal|packaging guidelines' legal section]], if you intend for it to be in the Fedora repository, be sure to follow
[[Licensing:Main]] and [[Packaging:LicensingGuidelines]]. In general, you need to only package software that is released as open source software (OSS)
using an approved OSS license (such as the GNU GPL, GNU LGPL, BSD-new, MIT/X, or Apache 2.0 licenses). Check to make sure that the software really is licensed this way (e.g. spot-check source code headers, README files, and so on). If there are bundled libraries, make sure they are also OSS.
 
=== Reuse existing package information ===
 
Try to reuse what you can. Obviously, make sure you aren't packaging something that is already packaged; you can find a list of existing packages in Fedora Package Collection in the [https://admin.fedoraproject.org/pkgdb/ Fedora Package Database]. Also check the [[PackageMaintainers/InProgressReviewRequests | In Progress Review Requests]] for packages that are currently being reviewed and the [[PackageMaintainers/RetiredPackages | Retired Packages]] list. Failing that, see if someone has already started to package it for Fedora. Google for "PROGRAMNAME Fedora rpm" or similar and maybe you can pick up where they started. You can use [http://pkgs.fedoraproject.org/gitweb/ Fedora Packages Git Repositories] directly to view <code>.spec</code> files (and patches) of any similar packages already in Fedora. You can download the source RPMs using a program from the yum-utils package, by:
Note:You may have to install <code>yum-utils</code> before execute <code>yumdownloader</code>
$ yum -y install yum-utils
$ yumdownloader --source sourcepackage-name
 
Alternatively, get the source manually from the http/ftp page of a [http://mirrors.fedoraproject.org/publiclist Fedora mirror] within the <code>releases/16/Everything/source/SRPMS</code> directory. Replace "<code>16</code>" with the Fedora release you want and download the <code>.src.rpm</code> package you want.
 
Once you have the SRPM, running the following command installs the SRPM into <code>~/rpmbuild</code>:
$ rpm -ivh sourcepackage-name*.src.rpm
 
You can also unpack the SRPM into a directory using <code>rpm2cpio</code>:
$ mkdir PROGRAMNAME_src_rpm
$ cd PROGRAMNAME_src_rpm
$ rpm2cpio ../PROGRAMNAME-*.src.rpm | cpio -i
 
Sometimes it's easiest to start with an existing package and then clean it up for Fedora. [http://rpmfind.net/ RPM Find] may help you find RPMs for non-Fedora systems. You can install SRPMs for other systems the same way as for Fedora. Failing that, you might look at the source package files (not binary <code>.deb</code>) for [http://packages.ubuntu.com/ Ubuntu] or [http://www.debian.org/distrib/packages Debian] (source package files are standard tarballs with a "<code>debian/</code>" subdirectory). If the [http://www.freebsd.org/ports/installing.html FreeBSD ports collection] has it, you could [ftp://ftp.freebsd.org/pub/FreeBSD/ports/ports/ports.tar.gz download the FreeBSD ports tarball] and see if their packaging information helps as a starting point. '''However''', this is sometimes not helpful at all. Different distributions have different rules, and what they do may be quite inappropriate for Fedora.
 
== Creating a spec file ==
 
You now need to create a SPEC file in the <code>~/rpmbuild/SPECS</code> directory. You should name it after the program name (e.g. "<code>program.spec</code>").  Use the archive name or the name advocated by the software author where you can, but be sure to follow the [[Packaging/NamingGuidelines|Package Naming Guidelines]].
 
=== Creating a blank spec file ===
 
When you're creating a SPEC file for the first time, vim (as of <code>7.1.270-1</code>) or emacs will automatically create a template for you:
  $ cd ~/rpmbuild/SPECS
  $ vim program.spec
 
Here's an example of what that template will look like:
Name:
Version:
Release: 1%{?dist}
Summary:
Group:
License:
URL:
Source0:
BuildRoot: %{_tmppath}/%{name}-%{version}-%{release}-root-%(%{__id_u} -n)
BuildRequires:
Requires:
%description
%prep
%setup -q
%build
%configure
make %{?_smp_mflags}
%install
rm -rf %{buildroot}
make install DESTDIR=%{buildroot}
%clean
rm -rf %{buildroot}
%files
%defattr(-,root,root,-)
%doc
%changelog
 
 
You can use <code>$RPM_BUILD_ROOT</code> instead of <code>%{buildroot}</code>. Both are acceptable, but just be consistent.
 
You may also use the <code>rpmdev-newspec</code> command to create a SPEC file for you.  <code>rpmdev-newspec NAME-OF-NEW-PACKAGE</code> can create an initial SPEC file for a new package, tailored to various types of packages.  It will guess what kind of template to use based on the package name, or you can specify a particular template; see <code>/etc/rpmdevtools/spectemplate-*.spec</code> for available templates.  See <code>rpmdev-newspec --help</code> for more information. For example, to create a new SPEC file for a python module:
 
cd ~/rpmbuild/SPECS
rpmdev-newspec python-antigravity
vi python-antigravity.spec
 
=== An example: <code>eject</code> ===
 
Here's a simple example showing a Fedora 9 SPEC file for the <code>eject</code> program:
 
Summary: A program that ejects removable media using software control
Name: eject
Version: 2.1.5
Release: 11%{dist}
License: GPL
Group: System Environment/Base
Source: http://metalab.unc.edu/pub/Linux/utils/disk-management/%{name}-%{version}.tar.gz
Source1: eject.pam
Patch1: eject-2.1.1-verbose.patch
Patch2: eject-timeout.patch
Patch3: eject-2.1.5-opendevice.patch
Patch4: eject-2.1.5-spaces.patch
Patch5: eject-2.1.5-lock.patch
Patch6: eject-2.1.5-umount.patch
BuildRoot: %{_tmppath}/%{name}-%{version}-%{release}-root
URL: http://www.pobox.com/~tranter
ExcludeArch: s390 s390x
BuildRequires: gettext
BuildRequires: automake
BuildRequires: autoconf
BuildRequires: libtool
%description
The eject program allows the user to eject removable media (typically
CD-ROMs, floppy disks or Iomega Jaz or Zip disks) using software
control. Eject can also control some multi-disk CD changers and even
some devices' auto-eject features.
Install eject if you'd like to eject removable media using software
control.
%prep
%setup -q -n %{name}
%patch1 -p1 -b .versbose
%patch2 -p1 -b .timeout
%patch3 -p0 -b .opendevice
%patch4 -p0 -b .spaces
%patch5 -p0 -b .lock
%patch6 -p1 -b .umount
%build
%configure
make
%install
rm -rf %{buildroot}
make DESTDIR=%{buildroot} install
# pam stuff
install -m 755 -d %{buildroot}/%{_sysconfdir}/pam.d
install -m 644 %{SOURCE1} %{buildroot}/%{_sysconfdir}/pam.d/%{name}
install -m 755 -d %{buildroot}/%{_sysconfdir}/security/console.apps/
echo "FALLBACK=true" > %{buildroot}/%{_sysconfdir}/security/console.apps/%{name}
install -m 755 -d %{buildroot}/%{_sbindir}
pushd %{buildroot}/%{_bindir}
mv eject ../sbin
ln -s consolehelper eject
popd
%find_lang %{name}
%clean
rm -rf %{buildroot}
%files -f %{name}.lang
%defattr(-,root,root)
%doc README TODO COPYING ChangeLog
%attr(644,root,root) %{_sysconfdir}/security/console.apps/*
%attr(644,root,root) %{_sysconfdir}/pam.d/*
%{_bindir}/*
%{_sbindir}/*
%{_mandir}/man1/*
%changelog
* Wed Apr 02 2008 Zdenek Prikryl &lt;zprikryl at, redhat.com&gt; 2.1.5-11
- Added check if device is hotpluggable
- Resolves #438610
 
=== SPEC file pieces explained ===
 
Other useful guides:
* [http://docs.fedoraproject.org/en-US/Fedora_Draft_Documentation/0.1/html/RPM_Guide/ch-creating-rpms.html RPM Guide] describes how to write a SPEC file.
* The IBM series "Packaging software with RPM" [http://www.ibm.com/developerworks/library/l-rpm1/ Part 1], [http://www.ibm.com/developerworks/library/l-rpm2/ Part 2], and [http://www.ibm.com/developerworks/library/l-rpm3.html Part 3].
* [http://rpm.org/max-rpm-snapshot/ Maximum RPM] has the most complete information, but is dated.
 
You will need to follow the Fedora guidelines: [[Packaging/NamingGuidelines|Package Naming Guidelines]], [[Packaging/Guidelines|Packaging guidelines]], and [[Packaging/ReviewGuidelines|Package review guidelines]].
 
Insert comments with a leading '#' character, but avoid macros (beginning with <code>%</code>) that are potentially multiline (as they are expanded first). If commenting out a line, double the percent signs (<code>%%</code>). Also avoid inline comments on the same line as a script command.
 
The major tags are listed below. Note that the macros <code>%{name}</code>, <code>%{version}</code> and <code>%{release}</code> can be used to refer to the Name, Version and Release tags respectively. When you change the tag, the macros automatically update to use the new value.
* '''Name''': The (base) name of the package, which should match the SPEC file name.  It must follow the [[Packaging/NamingGuidelines|Package Naming Guidelines]] and in most cases be lowercase.
* '''Version''': The upstream version number. See [http://fedoraproject.org/wiki/Packaging/NamingGuidelines#Version_Tag Version tag section] of the packaging guidelines. If the version contains tags that are non-numeric (contains tags that are not numbers), you may need to include the additional non-numeric characters in the Release tag. If upstream uses full dates to distinguish versions, consider using version numbers of the form <code>yy.mm[dd]</code> (e.g. <code>2008-05-01</code> becomes <code>8.05</code>).
* '''Release''': The initial value should normally be <code>1%{?dist}</code>. Increment the number every time you release a new package for the same version of software. When a new upstream version is released, change the Version tag to match and reset the Release number to 1. See [http://fedoraproject.org/wiki/Packaging/NamingGuidelines#Release_Tag Release tag section] of the packaging guidelines. [[Packaging/DistTag|Dist tag]] describes the optional "dist" tag that might be useful.
* '''Summary''': A brief, one-line summary of the package. Use American English, and do '''not''' end in a period.
* '''Group''': This needs to be a pre-existing group, like "Applications/Engineering"; run "<code>less /usr/share/doc/rpm-*/GROUPS</code>" to see the complete list. Use the group "Documentation" for any sub-packages (e.g. <code>kernel-doc</code>) containing documentation.
* '''License''': The license, which must be an open source software license. Do ''not'' use the old "Copyright" tag. Use a standard abbreviation (e.g. "<code>GPLv2+</code>") and be specific (e.g. use "<code>GPLv2+</code>" for GPL version 2 or greater instead of just "<code>GPL</code>" or "<code>GPLv2</code>" where it's true).  See [[Licensing]] and the [[Packaging/LicensingGuidelines|Licensing Guidelines]]. You can list multiple licenses by combining them with "<code>and</code>" and "<code>or</code>" (e.g. "<code>GPLv2 and BSD</code>").
* '''URL''': The full URL for more information about the program (e.g. the project website).  '''''Note: This is not where the original source code came from which is meant for the "Source0" tag below'''''.
* '''Source0''': The full URL for the compressed archive containing the (original) pristine source code, as upstream released it. "Source" is synonymous with "Source0".  If you give a full URL (and you should), its basename will be used when looking in the SOURCES directory. If possible, embed <code>%{name}</code> and <code>%{version}</code>, so that changes to either will go to the right place. [https://fedoraproject.org/wiki/Packaging:Guidelines#Timestamps Preserve timestamps] when downloading source files. If there is more than one source, name them Source1, Source2 and so on. If you're adding whole new files in addition to the pristine sources, list them as sources ''after'' the pristine sources. A copy of each of these sources will be included in any SRPM you create, unless you specifically direct otherwise.  See [[Packaging/SourceURL|Source URL]] for more information on special cases (e.g. revision control).
* '''Patch0''': The name of the first patch to apply to the source code.  If you need to patch the files after they've been uncompressed, you should edit the files and save their differences as a "patch" file in your <code>~/rpmbuild/SOURCES</code> directory. Patches should make only one logical change each, so it's quite possible to have multiple patch files.
* '''BuildArch''': If you're packaging files that are architecture-independent (e.g. shell scripts, data files), then add "<code>BuildArch: noarch</code>". The architecture for the binary RPM will then be "<code>noarch</code>".
* '''BuildRoot''': This is where files will be "installed" during the "%install" process (after the "%build" process).  This is a macro that creates a new special directory under <code>/var/tmp</code>; in Fedora it generally does not need to be changed. Newer versions of RPM will ignore this value and instead place the build root in "<code>%{_topdir}/BUILDROOT/</code>".
* '''BuildRequires''': A comma-separated list of packages required for building (compiling) the program. This field can be (and is commonly) repeated on multiple lines. These dependencies are ''not'' automatically determined, so you need to include ''everything'' needed to build the program. [https://fedoraproject.org/wiki/Packaging/Guidelines#BuildRequires Some common packages can be omitted], such as <code>gcc</code>. You can specify a minimum version if necessary (e.g. "<code>ocaml >= 3.08</code>"). If you need the file <code>/EGGS</code>, determine the package that owns it by running "<code>rpm -qf /EGGS</code>". If you need the program <code>EGGS</code>, determine the package that owns it by running "<code>rpm -qf `which EGGS`</code>". Keep dependencies to a minimum (e.g. use <code>sed</code> instead of <code>perl</code> if you don't really need perl's abilities), but beware that some applications permanently disable functions if the associated dependency is not present; in those cases you may need to include the additional packages. The "<code>auto-br-rpmbuild</code>" command may be helpful.
* '''Requires''': A comma-separate list of packages that are required when the program is installed. Note that the BuildRequires tag lists what is required to build the binary RPM, while the Requires tag lists what is required when installing/running the program; a package may be in one list or in both. In many cases, <code>rpmbuild</code> automatically detects dependencies so the Requires tag is not always necessary. However, you may wish to highlight some specific packages as being required, or they may not be automatically detected.
* '''%description''': A longer, multi-line description of the program.  Use American English. All lines must be 80 characters or less. Blank lines indicate a new paragraph. Some graphical user interface installation programs will reformat paragraphs; lines that start with whitespace will be treated as preformatted text and displayed as is, normally with a fixed-width font. See [http://docs.fedoraproject.org/drafts/rpm-guide-en/ch09s03.html RPM Guide].
* '''%prep''': Script commands to "prepare" the program (e.g. to uncompress it) so that it will be ready for building.  Typically this is just "<code>%setup -q</code>"; a common variation is "<code>%setup -q -n NAME</code>" if the source file unpacks into <code>NAME</code>. See the "%prep" section below for more.
* '''%build''': Script commands to "build" the program (e.g. to compile it) and get it ready for installing. The program should come with instructions on how to do this.  See the "%build" section below for more.
* '''%check''': Script commands to "test" the program. This is run between the "%build" and "%install" procedures, so place it there if you have this section. Often it simply contains "<code>make test</code>" or "<code>make check</code>". This is separated from "%build" so that people can skip the self-test if they desire.
* '''%install''': Script commands to "install" the program.  The commands should copy the files from the <code>BUILD</code> directory <code>%{_builddir}</code> into the buildroot directory, <code>%{buildroot}</code>. See the "%install" section below for more.
* '''%clean''': Instructions to clean out the build root. Typically this contains only:
rm -rf %{buildroot}
* '''%files''': The list of files that will be installed. See the "%files" section below for more.
* '''%changelog''': Changes in the package.  Use the format example above.
* '''ExcludeArch''': If the package does not successfully compile, build or work on a particular architecture, list those architectures under this tag.
* You can add sections so that code will run when packages are installed or removed on the real system (as opposed to just running the "%install" script, which only does a pseudo-install to the build root).  These are called "scriptlets", and they are usually used to update the running system with information from the package.  See the "Scriptlets" section below for more.
 
RPM also supports the creation of several packages (called [https://fedoraproject.org/wiki/How_to_create_an_RPM_package#Subpackages subpackages]) from a single SPEC file, such as <code>name-libs</code> and <code>name-devel</code> packages.
 
Do '''not''' use these tags:
* Packager
* Vendor
* Copyright
 
Do '''not''' create a "relocatable" package; they don't add value in Fedora and make things more complicated.
 
=== %prep section ===
The %prep section describes how to unpack the compressed packages so that they can be built. Typically, this includes the "<code>%setup</code>" and "<code>%patch</code>" commands with reference to the Source0 (and Source1 etc.) lines. See the [http://rpm.org/max-rpm-snapshot/s1-rpm-inside-macros.html Maximum RPM section on %setup and %patch] for more details.
 
The %{patches} and %{sources} macros are available since RPM 4.4.2 and are useful if you have a large list of patches or sources:
for p in %{patches}; do
    ...
done
 
However, keep in mind that using these will make your SPEC incompatible with RPMS used in RHEL and other RPM-based dirstributions.
 
==== %prep section: %setup command ====
 
The "<code>%setup</code>" command unpacks a source package. Switches include:
* '''<code>-q</code>''' : Suppress unecessary output. This is commonly used.
* '''<code>-n</code> ''name''''' : If the Source tarball unpacks into a directory whose name is not the RPM name, this switch can be used to specify the correct directory name. For example, if the tarball unpacks into the directory FOO, use "</code>%setup -q -n FOO</code>".
* '''<code>-c</code> ''name''''' : If the Source tarball unpacks into multiple directories instead of a single directory, this switch can be used to create a directory named ''name'' and then unpack into it.
 
There are [http://rpm.org/max-rpm-snapshot/s1-rpm-inside-macros.html more %spec options if you are unpacking multiple files], which is primarily useful if you
are creating subpackages (see below).  The key ones are:
 
{|
|-
| <code>-a number</code> || Only unpack the Source directive of the given number after changing directory (e.g. "<code>–a 0</code>" for Source0).
|-
| <code>-b number</code> ||  Only unpack the Source directive of the given number before changing directory (e.g. "<code>–b 0</code>" for Source0).
|-
| <code>-D</code> || Do not delete the directory before unpacking.
|-
| <code>-T</code> || Disable the automatic unpacking of the archives.
|}
 
==== %prep section: %patch commands ====
 
The "<code>%patch0</code>" command applies Patch0 (and %patch1 applies Patch1 etc.). Patches are the normal method of making necessary changes to the source code for packaging. The usual "<code>-pNUMBER</code>" option applies, which passes that argument onto the program <code>patch</code>.
 
Patch file names often look like "<code>telnet-0.17-env.patch</code>", which is the format <code>%{name} - %{version} - REASON.patch</code>" (though sometimes version is omitted). Patch files are typically the result of "<code>diff -u</code>"; if you do this from the subdirectory of <code>~/rpmbuild/BUILD</code> then you won't have to specify a <code>-p</code> level later.
 
This is a typical procedure for creating a patch for a single file:
cp foo/bar foo/bar.orig
vim foo/bar
diff -u foo/bar.orig foo/bar > ~/rpmbuild/SOURCES/PKGNAME.REASON.patch
 
If editing many files, one easy method is to copy the whole subdirectory underneath <code>BUILD</code> and then do subdirectory diffs.  After you have changed directory to "<code>~rpmbuild/BUILD/NAME</code>", do the following:
cp -pr ./ ../PACKAGENAME.orig/
... many edits ...
diff -u ../PACKAGENAME.orig . > ~/rpmbuild/SOURCES/''NAME''.''REASON''.patch
 
If you edit many files in one patch, you can also copy the original files using some consistent ending such as "<code>.orig</code>" before editing them. Then, you can use "<code>gendiff</code>" (in the <code>rpm-build</code> package) to create a patch with the differences.
 
Try to ensure that your patch match the context exactly. The default "fuzz" value is "<code>0</code>", requiring matches to be exact. You can work around this by adding "<code>%global _default_patch_fuzz 2</code>" to revert to the value found in older versions of RPM in Fedora, but it is generally recommended to avoid doing this.
 
As explained in [[Packaging/PatchUpstreamStatus]], all patches should have a comment above them in the SPEC file about their upstream status. This should document the upstream bug/email that includes it (including the date). If it is unique to Fedora, you should mention why it is unique. The Fedora Project tries not to deviate from upstream; see [[PackageMaintainers/WhyUpstream]] for the importance of this.
 
==== %prep section: Unmodified files ====
 
Sometimes, one or more of the Source files do not need to be uncompressed. You can "prep" those into the build directory like this (where <code>SOURCE1</code> refers to the relevant Source file):
cp -p %SOURCE1 .
 
=== %build section ===
 
The "%build" section is sometimes complicated; here you configure and compile/build the files to be installed.
 
Many programs follow the GNU <code>configure</code> approach (or some variation). By default, they will install to a prefix of "<code>/usr/local</code>", which is reasonable for unpackaged files. However, since you are packaging it, change the prefix to "<code>/usr</code>". Libraries should be installed to either <code>/usr/lib</code> or <code>/usr/lib64</code> depending on the architecture.
 
Since GNU <code>configure</code> is so common, the macro "<code>%configure</code>" can be used to automatically invoke the correct options (e.g. change the prefix to <code>/usr</code>). Some variation of this often works:
  %configure
  make %{?_smp_mflags}
 
To override makefile variables, pass them as parameters to <code>make</code>:
make %{?_smp_mflags} CFLAGS="%{optflags}" BINDIR=%{_bindir}
 
More more information, see [http://sourceware.org/autobook/ "GNU autoconf, automake, and libtool"] and [http://www.suse.de/~sh/automake/automake.pdf "Open Source Development Tools: An Introduction to Make, Configure, Automake, Autoconf" by Stefan Hundhammer].
 
Some programs use <code>cmake</code>.  See [[Packaging/cmake]].
 
If self-tests are available, it is generally a good idea to include them. They should be placed in the %check section (which immediately follows the %build section) instead of within the %build section itself, so that they can be easily skipped when necessary.
 
=== %check section ===
 
The "%check" section does testing, often it's "make test".
This is not documented in many other sources of RPM info.
 
=== %install section ===
 
The "%install" section is a set of script commands to "install" the program. The commands in this section should copy the files from a directory inside the "build directory" %{_builddir} (normally ~/rpmbuild/BUILD/''something'') into the build root directory, %{buildroot} (normally /var/tmp/''something''), creating the directories inside %{buildroot} as necessary.
 
'''Watch out''': Some of the terminology is very misleading:
* The ''build directory'' (under which compilations occur during %build) and the ''build root'' (where files are copied into during the %install process) are '''different'''.  The point of the %install process is to copy files, such as those under the build directory, to the right place in the build root. Perhaps "buildroot" should be called "installroot", but it's too late now, the terminology is entrenched.
* The build directory is normally ~/rpmbuild/BUILD, while the build root (where files get installed to during %install) is normally ~/rpmbuild/BUILDROOT.  The %prep stage will normally create a subdirectory underneath the build directory as part of %setup, and populate the build directory with files (based on the source information in %_sourcedir, which is typically in ~/rpmbuild/SOURCES).  During %build, the current directory will actually start at %{buildsubdir}, that newly-created  subdirectory under the build directory.  Typically %{buildsubdir} is something like ~/rpmbuild/BUILD/%{name}-%{version}.
* The "%install" script is ''not'' used when the binary rpm package is installed by the end-user!! The term "%install" is misleading, in fact, the script must ''not'' install the programs in the REAL final locations (e.g., in /usr/bin), but under the buildroot %{buildroot}.
 
Normally, the install script would first erase the %{buildroot} directory, and then do some variation of "make install" (ideally using DESTDIR=%{buildroot}, if the program supports it). Here's an example of an %install section:
%install
rm -rf %{buildroot}
make DESTDIR=%{buildroot} INSTALL="install -p" CP="cp -p" install
 
Ideally, every program would have a "make install" command that supported the [http://www.gnu.org/prep/standards/html_node/DESTDIR.html ''DESTDIR'' convention].  If the program includes a "make install" that supports DESTDIR, where possible, ''use it''. The DESTDIR convention supports redirecting file installations to descend from a specific directory, which is exactly what we want during %install.
 
Installing a program that does not support DESTDIR can be much harder, and no option is as good as native DESTDIR support.  Consider these alternatives:
* Patch the makefile so that it ''does'' support DESTDIR.  Create directories inside DESTDIR where necessary (feel free to use "mkdir -p", the "-p" option of mkdir is now standard and widely supported).  Be sure to submit the patch upstream.
* Use "%makeinstall".  Many older RPM documents suggest using "%makeinstall", which ''might'' work if "make install" doesn't support DESTDIR.  However, as noted in the Fedora guidelines, the %makeinstall macro "must NOT be used when make install DESTDIR=%{buildroot} works. %makeinstall is (merely) a kludge that can work with Makefiles that don't make use of the DESTDIR variable...".  Unfortunately, this sometimes has subtle failures, which is why %makeinstall should not be used if DESTDIR works.  The reason is based on how %makeinstall works.  The "%makeinstall" macro expands to something like "<tt>make prefix=%{buildroot}%{_prefix} bindir=%{buildroot}%{_bindir} ... install</tt>".  Many programs will quietly recompile or change parts of the program when values like prefix are changed, resulting in an incorrect installation.  See the Fedora guidelines if you want the details on why this approach can fail.  You will probably need to create appropriate directories inside %buildroot before calling %makeinstall (e.g., <tt>mkdir -p %{buildroot}%{_bindir}/</tt>).
* Consider using the auto-destdir package.  This requires "BuildRequires: auto-destdir", and changing "make install" to "make-redir DESTDIR=%{buildroot} install".  This only works well if the installation uses only certain common commands to install files, like cp and install; see "man make-redir" for details.
* Do the installation "by hand", that is, instead of invoking a build system, copy the files to the correct locations.  Basically, this would be a sequence that would create directories that weren't already created by the "BuildRequires" packages (typically using install -d or mkdir -p), followed by copying of files from the current directory (inside the build directory) into the buildroot directory (typically using "cp -p" and/or "install -p"). Running "make -n install" may make it easy to determine what this sequence should be.  Be sure to create directories inside %buildroot where necessary.  One serious problem with this approach is that it's easy to fail to install new or renamed files during an update&mdash;so if there's a better approach, use it instead.  If you ''do'' perform the installation "by hand", be ''especially'' careful with updates when using this approach.  For example:
%install
rm -rf %{buildroot}
mkdir -p %{buildroot}%{_bindir}/
cp -p mycommand %{buildroot}%{_bindir}/
 
As noted in the [[Packaging:Guidelines#Timestamps|packaging guidelines' timestamp section]],  "when adding file copying commands in the spec file, consider using a command that preserves the files' timestamps, eg. cp -p or install -p".  So, if the makefile lets you override the install command (typically named INSTALL), you might want something like INSTALL="install -p" CP="cp -p" as make parameters, like this:
make INSTALL="install -p" CP="cp -p" DESTDIR=%{buildroot} install
 
=== %files section ===
The %files section identifies what files and directories were added by the package - and thus, which files and directories are ''owned'' by the package.  Ownership is important - when you type "rpm -qif ''blah''",  you'll see who owns ''blah''.  This section is used when performing the ''bin'' stage, to determine which files are placed into each binary RPM file.
 
==== %files Basics ====
 
The %files section normally begins with a %defattr line which sets the default file permissions. The format of this is %defattr(<file permissions>, <user>, <group>, <directory permissions>), that is, one can specify the permissions to apply to files and directories in the %files section. The fourth parameter is often omitted. Usually one uses %defattr(-,root,root,-), where "-" means "use the default permissions".
 
This is followed by names or patterns of the directories or files to be installed and owned by this package. You should use macros for directory names, e.g., use %{_bindir}/myfile instead of /usr/bin/myfile, and %{_sbindir}/killaccount instead of /usr/sbin/killaccount.  If a name or pattern begins with "/" when expanded, then it is presumed to have been copied into the %{buildroot} followed by that pattern; when installed on the final system, it will be copied into that name ''without'' the buildroot prefix.  If you don't precede the pattern with "/", then it is presumed to be in the current directory (e.g., inside the build directory) - this is used for "documentation" files.  So if your package just installs /usr/sbin/mycommand, then your %files section ''could'' simply say:
%files
%defattr(-,root,root,-)
%{_sbindir}/mycommand
 
Any file or directory identified in the %files section is ''owned'' by the defining package. You should make sure that you declare ownership of every new file or directory the package creates.  You can use wildcards (*) which match a set of files - this makes the package less sensitive to changes. For example, you can declare that all the files that were copied into %{buildroot}/usr/bin are owned by this package by declaring:
%{_bindir}/*
 
Note that "%{_bindir}/*" does not claim that this package owns the /usr/bin directory - it claims that all the files that were installed inside the ''build root'' 's /usr/bin are owned by the package.
If you list a ''directory'' in the %files section, then you are claiming that this package owns that subdirectory and all files and directories in it, recursively (''all'' the way down) if they are present in the build root.  Do not list the "/usr/bin" or "%{_bindir}" directories directly in your %files list, because that would claim ownership of /usr/bin and everything inside it.  Claiming ownership of "%{_bindir}/*" is fine, though; that just claims ownership of the subdirectories and files you placed ''under'' %{buildroot}/%{_bindir}.  If you create a subdirectory such as %{_datadir}/%{name}, (/usr/share/NAME), you ''should'' include that directory in the %files list:
%{_datadir}/%{name}/
 
It's usually easier to use wildcards for filenames, and that's also better at coping with changes in upstream.  Older RPM documentation typically shows long lists under %files with individual names, such as /usr/bin/program1 followed by /usr/bin/program2.  Because of the way Fedora now uses buildroots, that is no longer necessary.
 
It's an error if ''no'' file matches the wildcard of a line, so only note the directories that actually matter.  Also, you can't identify the same file or directory more than once.  Finally, it's an error to have something in the buildroot and ''not'' listed under %files; the whole point of copying something into the buildroot is because you intend to have it installed in the final system.  If you don't intend that, remove those files during the %install process.
 
It is also possible to exclude files from a previous match by using a %exclude glob. This can be useful for including "almost all" of the files that match a different glob. However, note that, like any other file glob, even a %exclude glob will fail if it matches nothing. (This might be considered counterintuitive, as the whole point is essentially to ensure that a certain file ISN'T there, so this rule is especially important to remember.)
 
==== %files prefixes ====
You may need to add one or more prefixes to a %files entry (if more than one, use a space to separate them).
 
Typically there is a "%doc" entry with a list of documentation files that didn't get copied into the buildroot; usually there is at least a README and LICENSE file.  You ''must'' include the license file, if there is one. You may prefix some of these with %attr(mode, user, group) to set the file permission mode, user, or group.  You don't need to claim ownership of the /usr/share/doc/%{name} directory, that's automatic if there's a %doc entry.  Any %doc entry must not affect the runtime of the application (if it is in %doc, the program must run properly if it is not present).
 
There is a potential 'gotcha' with %doc entries: if you have a %doc entry, then you can't use commands during %install to copy files into the documentation directory descending from %_defaultdocdir. That's because if there's a %doc entry, rpmbuild will automatically remove the docdir files created by %install before installing the files listed with %doc.  This can hit you if, for example, you want an "examples" subdirectory in the documentation directory.  In this case, don't use "%doc" to mark documentation.  Instead, create the directories and copy the files into %{buildroot}%{_defaultdocdir}/%{name}-%{version}/ during %install, and make sure that %files includes an entry for "%{_defaultdocdir}/%{name}-%{version}/".  They will still be correctly marked as documentation.
 
If you save configuration files (under /etc - don't put them under /usr), you should normally prefix them with %config(noreplace) unless this program version uses a non-backwards-compatible configuration format (in which case, prefix them with %config).
 
Prefixing a %files entry with "%attr(mode, user, group)" lets you set the permissions for particular file(s), e.g., "%attr(0644, root, root)".  A "-" means "use the default".
 
If a file is in particular natural language, use %lang to note that. E.G.:
%lang(de) %{_datadir}/locale/de/LC_MESSAGES/tcsh*
 
Programs using Locale files should follow the
[[Packaging:Guidelines#Handling_Locale_Files|recommended method of handling the i18n files]]:
 
* find the filenames in the <code>%install</code> step: <code> %find_lang ${name}</code>
* add the required build dependencies: <code>BuildRequires: gettext</code>
* use the found filenames: <code>%files -f ${name}.lang</code>
 
Some documentation claims that %license and %readme are valid prefixes; they are ''not'' valid in Fedora.  Use %doc instead.
 
==== %files and Filesystem Hierarchy Standard (FHS) ====
 
You should follow the [http://www.pathname.com/fhs/ Filesystem Hierarchy Standard (FHS)], i.e., ordinary application executables go into /usr/bin, global configuration files go into /etc, ordinary libraries go into /usr/lib, and so on, with one exception: executables that should ''not'' normally be executed directly by users or administrators should go into a subdirectory of /usr/libexec; usually you'd refer to the necessary directory as "%{_libexecdir}/%{name}".
 
You shouldn't be installing files under /usr/local; that is where ''unpackaged'' files go.
Typically there will be a "prefix" attribute that lets you set the prefix to be "/usr" instead of "/usr/local".
 
Unfortunately, many programs' "normal" installation routines do not follow the FHS.
In particular, many programs normally place architecture-independent libraries under /usr/lib, instead of
under /usr/share as the FHS requires.
The [http://www.pathname.com/fhs/pub/fhs-2.3.html#USRLIBLIBRARIESFORPROGRAMMINGANDPA FHS /usr/lib section] says that
/usr/lib is for architecture-''dependent'' data (e.g., ELF files like .so files), while
[http://www.pathname.com/fhs/pub/fhs-2.3.html#USRSHAREARCHITECTUREINDEPENDENTDATA /usr/share] is for
architecture-''independent'' data.  That way, systems with different CPUs can share /usr/share.
There are many exceptions to this rule in Fedora (e.g., Python and Perl), but Fedora applies this rule more
strictly than some distributions.  Note, for example, that rpmlint will complain if you
put just about anything other than ELF files into /usr/lib.
 
==== %files example ====
 
Here's a simple example of a %files section:
%files
%defattr(-,root,root,-)
%doc README LICENSE
%{_bindir}/*
%{_sbindir}/*
%{_datadir}/%{name}/
 
==== Finding duplicates ====
 
The Fedora guidelines require that
"A Fedora package must not list a file more than once in the spec
file's %files listings."
 
You can list any duplicates of two binary packages by doing:
cd ~/rpmbuild/RPMS/ARCH # Substitute "ARCH" for your architecture
rpm -qlp PACKAGE1.*.rpm | sort > ,1
rpm -qlp PACKAGE2.*.rpm | sort > ,2
comm -12 ,1 ,2
 
=== Scriptlets ===
You can add sections so that code will run when packages are installed or removed on the real system (as opposed to just running the %install script, which only does a pseudo-install to the build root).  These are called "scriptlets", and they are usually used to update the running system with information from the package.
 
The scriptlets in %pre and %post are run before and after a package is installed (respectively). The scriptlets %preun and %postun are run before and after a package is uninstalled. The scriptlets %pretrans and %posttrans are run at start and end of a transaction.  See [[Packaging/ScriptletSnippets]] for more examples and details.  For example, every binary RPM package which stores shared library files (not just symlinks) in any of the dynamic linker's default paths, must call ldconfig in %post and %postun (post-install and post-uninstall). If the package has multiple subpackages with libraries, each subpackage should also have a %post/%postun section that calls /sbin/ldconfig. For example:
%post -p /sbin/ldconfig
%postun -p /sbin/ldconfig
 
''Beware'': The "-p" option specifies what ''command processor'' to use for the commands on the following lines.
If there are no following lines, then using /sbin/ldconfig as the "command processor" is a minor efficiency improvement compared to putting "/sbin/ldconfig" on the next line, and letting the shell invoke it.
That's because by using "-p",
the shell isn't invoked simply to invoke a single program.
But if you have multiple shell commands,
don't use "-p" or /sbin/ldconfig after it!  Instead, leave it blank, and include the shell commands under it.
 
If you are going to run programs in scriptlets, they must be installed before you run them.
You have to use special variants of the "Requires:" tag, so that
the program will be installed before you try to use it.  These are of the form "Requires(CONTEXT):", e.g., "Requires(post)".
 
Most scriptlets (%pre, %post, %preun, and %postun) provide an argument you can use,
accessed via $1, which is the number of packages of this name which will be left on the system
when the action completes.
Don't compare for ''equality'' with 2; check if they are ''greater than or equal than'' 2, since
users can arrange to have multiple versions of a package installed simultaneously.
For %pretrans and %posttrans, $1 is always 0.
 
For example, after adding an info manual to the system the dir file
which indexes the info manuals should be updated.
Basically, after you install the info manual, you need to run the program install-info.  That's fine, except that install-info is part of package info, and there's no guarantee that info is installed unless we require it. Also, if "install-info" fails, we don't want to fail ''all'' processing. Here's one way to do that:
 
Requires(post): info
Requires(preun): info
...
%post
/sbin/install-info %{_infodir}/%{name}.info %{_infodir}/dir || :
%preun
if [ $1 = 0 ] ; then
/sbin/install-info --delete %{_infodir}/%{name}.info %{_infodir}/dir || :
fi
 
There is another glitch related to installing info files. The <code>install-info</code> command will update
the info directory, but we have to prevent the install of a useless, empty directory file from the
RPM_BUILD_ROOT environment, by deleting it in  the <code>%install</code> section:
rm -f $RPM_BUILD_ROOT%{_infodir}/dir
 
Another scriptlet-like abilility are ''triggers''.  You can define triggers for when ''other'' packages
are installed or uninstalled.  See ''Maximum RPM'' for more information about triggers.
 
=== Macros ===
 
Spec files may contain "macro" references (text beginning with "%"), which are replaced with other values.
You can follow % by a word, e.g., "%name", but just like shell variables you must bracket the name with {...}
if letters or digits immediately follow, e.g., "%{name}".
 
As noted in the
[[Packaging/Guidelines| Packaging Guidelines]],
There are two styles for referring some values such as the rpm Build Root and Optimization Flags:
* "macro style": %{buildroot}, %{optflags}
* "variable style": $RPM_BUILD_ROOT, $RPM_OPT_FLAGS
Pick a style and use it consistently throughout your packaging; this document uses "macro style".
 
Here are some typical macros:
 
{|
! Macro !! Typical Expansion !! Meaning
|-
| %{_bindir} || /usr/bin || Binary directory (where executables are usually stored)
|-
| %{_builddir} || ~/rpmbuild/BUILD || Build directory; files are compiled a subdirectory of the build directory.  See %buildsubdir.
|-
| %{buildroot} ||  ~/rpmbuild/BUILDROOT || Build root, where files are "installed" during %install. The %install stage copies files from a subdirectory of %{_builddir} to a subdirectory of %{buildroot}. Historically %{buildroot} was in "/var/tmp/".
|-
| %{buildsubdir} || %{_builddir}/%{name} || Build subdirectory, where files are compiled during %build. It's under %{_builddir}, set after %setup.
|-
| %{_datadir} || /usr/share || Share directory.
|-
| %{_defaultdocdir} || /usr/share/doc || Default documentation directory.
|-
| %{dist} || .fc''NUMBER'' || Distribution+version short name (e.g., ".fc9")
|-
| %{fedora} || ''NUMBER'' || Number of fedora release (e.g., 9)
|-
| %{_includedir} || /usr/include
|-
| %{_infodir} || /usr/share/info
|-
| %{_initrddir} || /etc/rc.d/init.d
|-
| %{_libdir} || /usr/lib
|-
| %{_libexecdir} || /usr/libexec
|-
| %{_localstatedir} || /var
|-
| %{_mandir} || /usr/share/man
|-
| %{name} || || Name of package, set by Name: tag
|-
| %{_sbindir} || /usr/sbin
|-
| %{_sharedstatedir} || /var/lib
|-
| %{_sysconfdir} || /etc
|-
| %{version} || || Version of package, set by Version: tag
|}
 
To see more about macros you
can look in /etc/rpm/* and the "macros" files under "/usr/lib/rpm/",
especially /usr/lib/rpm/macros.
You can also use "rpm --showrc" to show the values rpm will use for all of the options
currently set in rpmrc and macro configuration files.
 
You can set your own macro values using %global; be sure to define them before you use them. Macro definitions
can refer to other macros.  For example:
%global myvalue 50
 
You can use rpmbuild to find the value of some macro, using its "-E" (--eval) option. For example, to find the current expansion of %{_bindir} in myfile.spec, you can run:
rpmbuild -E '%{_bindir}' myfile.spec
 
[[Packaging/RPMMacros]] has more information on macros, as does
[http://docs.fedoraproject.org/drafts/rpm-guide-en/ch09s07.html RPM Guide chapter 9].
 
=== Other tags ===
 
We noted the "Requires" and "BuildRequires" tags earlier.
There are a few other tags for controlling dependencies:
Provides, Obsoletes, Conflicts, and BuildConflicts.
* "Provides:" lets you list ''virtual'' package names that this package provides.  Sometimes there are several different packages that can provide a function, and using packages won't care which one.  In that case, each of the packages that provide the function should "provide" a virtual package, and then using packages can list the virtual package name under "Requires:".  For example, several different packages might provide "latex"; if you depend on the virtual package "tex(latex)", then users can choose which package to get "latex" from.  If you provide virtual packages, you might also want to use the [http://dailypackage.fedorabook.com/index.php?/archives/6-Wednesday-Why-The-Alternatives-System.html "alternatives" system], but be careful: "alternatives" settings are ''system-wide'', so if multiple users on the same system might want different defaults, don't use the alternatives system. You can find out what a given package provides (both virtual and non-virtual names) by querying "rpm -q --provides PACKAGENAME".  Some virtual packages in Fedora are:
** ''MTA'' : Used for mail transport agents, such as sendmail.
** ''tex(latex)'' : Used for latex
* "Obsoletes:" lets you state that installing this package should (normally) cause the removal of the other named package(s).  This is useful when a package's name changes, or when a package wholly replaces a different package.
* "Conflicts:" lets you state what packages cannot be installed simultaneously this one.  Obviously, try to avoid this if you can; see [[Packaging/Conflicts]] if you think you need to use it.
* "BuildConflicts:" lets you state what packages cannot be installed when building this package. Obviously, try to avoid this if you can.
 
You can control which architectures a package builds (or doesn't build).  For example, if your package can't compile on ppc, you can do this:
ExcludeArch: ppc
There's also an "ExclusiveArch" tag. The valid architectures one can specify in these tags are listed in the [[Architectures]] section.
 
=== Subpackages ===
A spec file can define more than one binary package, e.g., client and server,
or runtime and developer packages.
If there's a large amount of documentation, it may be split into a NAME-doc subpackage.
You will always have one spec file and one source RPM (SRPM), even if there are
multiple binary RPMs that they generate.
A spec file that produces multiple binary packages still has only
one creation process, so there is only one
%prep, %build, %check, and %install section that creates all the files
for all the packages.
 
In a spec file, use the %package directive to start defining a subpackage:
%package sub_package_name
 
By default, the subpackage name is PACKAGE_NAME, "-", SUBPACKAGE_NAME; you can
use "-n" to override this and make a new name:
%package -n new_sub_package_name
 
After the %package directive, list the tags for the subpackage.
This should include at least the "Summary:" and "Group:" tags and directives
"%description SUBPACKAGE_NAME" and "%files SUBPACKAGE_NAME".
Anything not specified by the subpackage will be inherited from its parent.
For the directives, if you used "-n" with %package,
you'll need it again for these directives.
You need to specify the name for the other directives, e.g., %pre and %post,
if you use them in the subpackage.
 
[http://docs.fedoraproject.org/en-US/Fedora_Draft_Documentation/0.1/html/RPM_Guide/ch10s04.html See the RPM Guide section on subpackages] for more information.
 
=== Conditionals ===
 
You can insert conditional statements.
E.G., you can test if you are creating a binary for a certain architecture
with:
%ifarch ARCHITECTURE_NAME
the negated version with:
%ifnarch ARCHITECTURE_NAME
or the more general conditional:
%if TRUE_OR_FALSE
 
There is an optional "%else" section; all of these are closed with "%endif".
 
=== Application Specific Guidelines ===
 
There are many application-specific guidelines that can help you (e.g., for specific programming languages, applications, libraries, and build systems).  Many of them are listed as part of the
[[Packaging/Guidelines#Application_Specific_Guidelines|Application Specific Guidelines of Packaging/Guidelines]].  Examples of application-specific guidelines are those for:
* [[Packaging:Cmake|Cmake]]
* [[Packaging:Emacs|Emacs]]
 
Failing that, some other ways of finding application-specific help are:
* The 'SEARCH' command on Fedoraproject.org.
* [[PackagingDrafts]]
* A [[SIGs|Special Interest Group (SIG)]]
* [http://fedoraproject.org/wiki/Special:PrefixIndex/Packaging Wiki pages prefixed with 'Packaging']
 
=== Miscellaneous hints ===
 
Try to write your scripts so that when upstream makes changes, the packaging is likely to work when you change the version number and reload the source file(s).  For example, if it contains *.txt files with execute bits, instead of doing:
  chmod a-x Filename1.txt Filename2.txt Filename3.txt
consider doing this, which will handle new filenames that use the same file naming convention:
  chmod a-x *.txt
 
If you want to see lots of examples of scriptlets, you can show all the scriptlets on installed programs using:
  rpm -qa --queryformat "\n\nPACKAGE: %{name}\n" --scripts | less
 
[[Packaging/FrequentlyMadeMistakes]] has information on frequently-made mistakes.
 
Don't try to interact with the user; RPM is designed to support batch installs.  If an application needs to show a EULA, that needs to be part of its initial execution, not its installation.
 
You might not want to start services, because in a big install that could slow things down. If you install an init script, consider using chkconfig to arrange for the service to be started and stopped on the next reboot.  Before ''uninstalling'' you should normally try to stop its services if it's running.
 
Uninstall should reverse most changes made during installation, but don't remove any user-created files.
 
Normally, if there are binary executables, a separate "debug" package is created with the symbols, and the symbols are stripped from the normal binary packages.  If this shouldn't happen, you can disable the package-creation and stripping with:
%global _enable_debug_package 0
%global debug_package %{nil}
%global __os_install_post /usr/lib/rpm/brp-compress %{nil}
 
To prevent stripping you may also need to do this in the %install section:
export DONT_STRIP=1
 
A way to check for the version of Fedora in a spec file for conditional builds is:
%if 0%{?fedora} <= <version>
(The ? causes the macro to evaluate to blank if %fedora is not defined, and this causes the end result to be "0", which is a number and thus ok, while not interfering with the result if there is actually a value for %fedora.)
 
Note that the previous trick DOES NOT work in Koji "scratch" builds - %fedora is set during the creation of a source RPM. (Thus, this trick does work in actual Koji builds as the system extracts sources from the source RPM and rebuilds the source RPM with the appropriate %fedora value.)
 
There are also some recommendations and controversial tricks on
[[PackageMaintainers/Packaging Tricks]].
 
GUI programs ''must'' have a desktop entry (so that people can invoke it from a graphical menu). The
[http://fedoraproject.org/wiki/Packaging/Guidelines#Desktop_files Fedora packaging guidelines discuss desktop files].  See also the [http://standards.freedesktop.org/desktop-entry-spec/latest/ desktop entry spec] (for .desktop files) and
[http://standards.freedesktop.org/icon-theme-spec/icon-theme-spec-latest.html icon theme spec] (for icon-related materials such as those in /usr/share/icon).
 
=== Older RPM documents ===
Some older documents about RPM have the most information, but some older documents make claims that are no longer true:
* rpm files are no longer placed in a shared /usr/src/redhat directory.  This is an obsolete way of using rpm and ''not'' recommended; modern systems set a %{_topdir} instead like ~/rpmbuild.
* the %install process does not install files in their final location.  Instead, it "installs" files to the buildroot.
* The "rpm" command no longer creates packages (e.g., "rpm -ba" was once legal). Use the separate "rpmbuild" program instead.
* Many historical specs use the "%define" command to define macros.  However, "%define" creates a locally defined submacro within other macro definitions; this is very rarely needed, and using %define incorrectly can cause subtle bugs.  For nearly all uses, use "%global" instead.  (See [[PackagingDrafts/global_preferred_over_define]].)
* The "BuildRoot:" value is now ignored.
 
== Quick test with rpmlint ==
 
Before trying to build anything from it, you should run ''rpmlint'' on the spec file:
$ rpmlint program.spec
This will catch many errors early. If the reported error doesn't make sense,
run it again with the "-i" option (this gives longer messages).
 
Generally, you should not have errors from rpmlint, but sometimes
rpmlint is excessively noisy.
The
[http://fedoraproject.org/wiki/Packaging/Guidelines#Use_rpmlint Fedora packaging guidelines]
explain which ones to ignore, e.g., ignore "no-packager-tag" and "no-signature" errors.
 
== Creating RPMs from the spec file ==
 
Once you've create a spec file, say "program.spec", you can create
source and binary RPMs by simply running this:
  $ rpmbuild -ba program.spec
 
If this works, then your binary RPM files will be created underneath ~/rpmbuild/RPMS/ and the source RPM will be in ~/rpmbuild/SRPMS.
 
When things go wrong, you can "cd" into the appropriate directory and see what's left over.
If you want to skip earlier stages, use the "--short-circuit" option; this is handy if you had a successful build, but have an error in the %install section.  For example, to restart at the %install stage (skipping earlier stages), do this:
  $ rpmbuild -bi --short-circuit program.spec
 
If you just want to create a source RPM (.src.rpm), do this in the SPECS directory:
rpmbuild -bs program.spec
This will create the source RPM in ~/rpmbuild/SRPMS.  Creating ''only'' a source rpm (.src.rpm) is quite quick, because rpm simply needs to copy the .spec file and associated SOURCES files into a .src.rpm file.  Creating a binary rpm typically takes ''much'' longer, because this requires running the %prep, %build, and %install scripts.
 
== Testing RPMs you've built (including rpmlint) ==
 
Run rpmlint on the .spec files, generated ''binary'' RPM, and generated source RPM. Rpmlint works on .spec files, binary RPMs, and source RPMs, finding different things in each.  You need to eliminate or justify rpmlint warnings before posting a package.  If you are in the SPECS directory, do this:
$ rpmlint ''NAME''.spec ../RPMS/*/''NAME''*.rpm ../SRPMS/''NAME''*.rpm
 
Normally rpmbuild will build a binary RPM with debugging information - this will handle that.
 
If you "cd" to the "~/rpmbuild/RPMS" directory, and then cd to the architecture subdirectory,
you'll find some binary rpms. You can quickly see their files and their permissions by using rpmls
(check to see that they are what you expect):
$ rpmls *.rpm
 
If those look okay, you can become root and try to install them:
# rpm -ivp XYZ1.rpm XYZ2.rpm XYZ3.rpm ...
 
Then, you can test them out.  Use it a few different ways and see if it works correctly.  If it's a GUI tool, make sure it shows up in the menu (if it doesn't, something is wrong with your .desktop entry).
 
You can uninstall packages later using:
# rpm -e XYZ1 XYZ2 XYZ3
 
If that works, you can use Mock to do a more rigorous test that you have accurate build dependencies.  Basically, mock will create a nearly-empty environment and try to rebuild the package; if it fails, then you forgot to list something in a "BuildRequires:" statement. See [[Using Mock to test package builds]] for more information about how to use Mock; once your account is a member of the "mock" group, you can run commands like this to do local testing:
$ mock -r fedora-9-i386 rebuild path_to_source_RPM
 
If a mock build fails, or the resulting program doesn't work correctly, then you almost certainly have one or more missing BuildRequires packages.
 
Once Mock works on your system, you can use Koji (which uses Mock) to do builds on
many different systems, some of which you may not have.
[[PackageMaintainers/Join]] and [[PackageMaintainers/UsingKoji]] have more information about Koji.
Once it's set up, you can test your source RPM
on a variety of platforms by running commands like:
$ koji build --scratch dist-f9 path_to_source_RPM
 
You can replace dist-f9 with dist-f8, dist-f10, etc., to try other releases. Don't use "dist-rawhide", that's not really rawhide.  Remember, the values of %fedora, %fc9, etc., will not be correct for a scratch build, so this won't work if your spec file does something different based on those values.
 
Your koji builds can only depend on packages that are actually in the TARGET distribution repository.  Thus, you can't use koji to build for released distributions if your package depends on other new packages that Bodhi hasn't released yet.  You ''can'' use koji to build for rawhide (the next unreleased version), even if it depends on other new packages, as long as the other packages were built in the CVS "devel" section as described below.
If you need to build against a package that is not yet a stable released update, you can file a ticket with rel-eng at: https://fedorahosted.org/rel-eng/newticket and request that that package be added as a buildroot override.
 
== Helpful tools ==
 
The "rpmdevtools" package has a number of helpful tools; "rpm -qil rpmdevtools" will show you what it installs.
One particularly useful tool is rpmdev-bumpspec, which has this form:
rpmdev-bumpspec --comment=COMMENT --userstring=NAME+EMAIL_STRING SPECFILES
rpmdev-bumpspec will bump the release tag in the spec file(s), and add a changelog comment with the right datetime and version format.  COMMENT should typically start with "- ".
 
Similarly, "yum-utils" has a number of yum-specific tools.  "yumdownloader" is especially helpful; you can download the source RPM of a package by simply running "yumdownloader --source PACKAGENAME".  You can then use "rpm -U SOURCEPACKAGENAME" to install the source files.  E.G., "yumdownloader --source glib; rpm -Uvh glib*.src.rpm".
 
The auto-buildrequires package has a pair of nice tools for helping to figure out the proper BuildRequires entries.  After installing this package, replace "rpmbuild" with "auto-br-rpmbuild" and you'll see an automatically-generated buildrequires list.
 
You might find [http://rust.sourceforge.net/ RUST] useful (GPL).
It is "a drag &amp; drop RPM creation GUI and a 'sandboxing' toolkit that allows you to do software installations within a chrooted environment and automatically generate RPMs from arbitrary source code, without ever seeing a spec file."
If you're creating spec files, it can help you determine the %files.
Note, however, that it does not create .spec files, nor does it create packages of adequate quality for the Fedora repository; it is primarily a tool for making quick-and-dirty binary RPM packages.
(Note: it is no longer at "rusthq.com".)
 
[http://kitenet.net/~joey/code/alien/ Alien] converts between package formats.
It won't produce clean source RPMs, but converting an existing package
might provide helpful information.
 
== Guidelines and rules ==
 
When you create your packages, you'll need to follow the following rules and guidelines:
* [[Join the package collection maintainers| How to join the Fedora Package Collection Maintainers]] - describes the process for becoming a Fedora package maintainer
* [[Packaging:Guidelines | Packaging Guidelines]]
* [[Packaging:NamingGuidelines| Package Naming Guidelines]]
* [[Packaging:DistTag| Dist Tag Guidelines]]
* [[Packaging:ReviewGuidelines| Package Review Guidelines]]
 
There are many official guidelines that will help you with specific circumstances
(Java programs, OCaml programs, GNOME programs, etc.); the
[[Packaging:Guidelines|Packaging Guidelines]] include cross-references to those guidelines.
You can also learn more from the [[SIGs]] and
[[:Category:Package Maintainers|Package Maintainers]] sections.
[https://fedoraproject.org/wiki/Special:Prefixindex/Packaging You can also see the list of all Wiki pages about Packaging] to see if any apply.
 
Failing that, you might find some useful recommendations in the unofficial
[https://fedoraproject.org/wiki/Special:Search?ns0=1&search=PackagingDrafts%2F&searchx=Search Packaging Drafts] and [https://fedoraproject.org/wiki/PackagingDrafts Packaging Drafts To Do].
These are unofficial, obviously.
You might find ideas from [http://en.opensuse.org/Packaging SuSE],
[http://www.debian.org/doc/debian-policy/ Debian], but
[http://www.mail-archive.com/distributions@lists.freedesktop.org/msg00156.html distributions differ in their rules], so do not presume they can be used directly.
 
The .spec files that you create must be open source software, as noted in the
[http://fedoraproject.org/wiki/Legal/Licenses/CLA CLA].
 
== Maintaining the package ==
 
Once your package is accepted, you (or your co-maintainers) need to maintain it.
See the [[Package update HOWTO]] and [[Package update guidelines]] for more information.
If you update the version in multiple releases of Fedora, do it "backwards" in time, e.g.,
release for Fedora N, then once that's accepted, Fedora N-1
(the system presumes that later versions of Fedora have the same or later versions of programs).
 
Encourage the upstream developers to use standard source code release conventions.  Using standard conventions makes packaging ''much'' easier.  For more information, see:
* [http://www.dwheeler.com/essays/releasing-floss-software.html Releasing Free/Libre/Open Source Software (FLOSS) for Source Installation] (a quick summary)
* [http://www.gnu.org/prep/standards/html_node/Managing-Releases.html GNU Coding Standards release process]
* [http://en.tldp.org/HOWTO/Software-Release-Practice-HOWTO/ Software Release Practice HOWTO]
* [http://www.pathname.com/fhs/ Filesystem Hierarchy Standard (FHS)]
* [http://offog.org/articles/packaging/ Packaging Unix software]
 
== For more information ==
 
The [[:Category:Package Maintainers|Package Maintainers]] page links to many other useful pages, and the
[[Package update HOWTO]] describes how to update an existing package you already maintain in Fedora.
 
For more information, outside of the Fedora Wiki, see:
* [http://www.g-loaded.eu/2006/04/05/how-to-build-rpm-packages-on-fedora/ How to build RPM packages on Fedora] - very brief run-through
* Packaging software with RPM (developerWorks) [http://www.ibm.com/developerworks/library/l-rpm1/ Part 1], [http://www.ibm.com/developerworks/library/l-rpm2/ Part 2], and [http://www.ibm.com/developerworks/library/l-rpm3.html Part 3]
* Fedora Classroom had a IRC session on packaging and you can refer to the logs at https://fedoraproject.org/wiki/Building_RPM_packages_%2820090405%29
* [http://koti.welho.com/vskytta/packagers-handbook/packagers-handbook.html Fedora Packager's Handbook]
* [http://www.redhatmagazine.com/2008/02/28/when-sally-met-eddie-the-fedora-package-story/ When Sally met Eddie] - a simple tale, but little detail
* [http://rpm.org/max-rpm-snapshot/ Maximum RPM Book] - most complete information, but in some cases old/obsolete
* [http://docs.fedoraproject.org/en-US/Fedora_Draft_Documentation/0.1/html/RPM_Guide/ch-creating-rpms.html RPM Guide, section on creating RPMs] - this has lots of good information, and is slightly more up-to-date, but is a draft
* [http://docs.fedoraproject.org/developers-guide/ch-rpm-building.html Developer's guide, section on building RPMs]
* [http://www.gurulabs.com/GURULABS-RPM-LAB/GURULABS-RPM-GUIDE-v1.0.PDF Creating RPMS slides] from Guru Labs
* [http://freshrpms.net/docs/fight/ The fight, my first attempt to make a readable rpm package building introduction.]
* [http://genetikayos.com/code/repos/rpm-tutorial/trunk/rpm-tutorial.html RPM Tutorial (Fullhart)]
* [http://www-uxsup.csx.cam.ac.uk/talks/rpmbuild/rpmbuild.pdf Cambridge RPM tutorial] is a presentation on creating basic RPMs
* [http://en.tldp.org/HOWTO/RPM-HOWTO/index.html RPM HOWTO: RPM at Idle by Donnie Barnes]
* [http://home.fnal.gov/~dawson/rpms/howto/index.html RPM HowTo] by Dawson
* [http://en.opensuse.org/SUSE_Build_Tutorial SuSE build tutorial] - but about SuSE, not Fedora. [http://en.opensuse.org/Build_Service/cross_distribution_package_how_to Cross-distribution package HOWTO] has hints if you're building one RPM for many distributions.
* [http://wiki.mandriva.com/en/Development/Howto/RPM Mandriva Rpm HowTo (en)] ([http://www.mandrivaclub.com/xwiki/bin/view/KB/MandrivaRpmHowTo alt]) is an RPM tutorial, though for Mandriva (nee Mandrake).  Note: In Fedora, do ''not'' recompress original tarballs, as Mandriva suggests, because that would change their cryptographic hashes.
* [http://linuxshellaccount.blogspot.com/2008/03/creating-your-own-linux-rpms-initial.html Creating Your Own Linux RPM's - The Initial Software Build] is another brief intro, but it makes the point that "The process of building RPM's is much simpler than creating packages for Solaris... Fewer steps, and the ability to add all of your software information into one specification file, makes for a much tighter (and easier to modify or reproduce) software packaging system."
* [http://fedoranews.org/alex/tutorial/rpm/ All you need to know about RPM] (more about installing packages than creating them)
* The [http://wiki.rpm.org/ rpm.org Wiki] has some useful information, such as the [http://wiki.rpm.org/Problems list of known RPM problems]
 
Note: The [http://rpm5.org/ rpm5.org] site has some documentation, but do not depend on it; that is the home of a ''fork'' of RPM maintained by Jeff Johnson.  The RPM used by Fedora (and Novell/SuSE) is instead based at [http://www.rpm.org rpm.org].
[http://lwn.net/Articles/236029/ lwn.net has a brief article] about this.
 
[[Category:Package Maintainers]]
[[Category:How to]]

Latest revision as of 20:57, 26 May 2021