From Fedora Project Wiki

(→‎Setup volume storage: changed the page to reflect the new requirements to use cinder service)
Line 96: Line 96:
== Setup volume storage ==
== Setup volume storage ==


The openstack-nova-volume service requires an LVM Volume Group called nova-volumes to exist. We simply create this using a loopback sparse disk image.
The openstack-cinder-volume service requires an LVM Volume Group called cinder-volumes. We simply create this using a loopback sparse disk image.
 
$> sudo dd if=/dev/zero of=/var/lib/nova/nova-volumes.img bs=1M seek=20k count=0
$> sudo vgcreate nova-volumes $(sudo losetup --show -f /var/lib/nova/nova-volumes.img)


$> sudo dd if=/dev/zero of=/var/lib/nova/cinder-volumes.img bs=1M seek=20k count=0
$> sudo vgcreate cinder-volumes $(sudo losetup --show -f /var/lib/nova/cinder-volumes.img)


== Nova Network Setup ==
== Nova Network Setup ==

Revision as of 01:38, 29 April 2013

Basic Setup

These steps will setup OpenStack services to be accessed by the OpenStack dashboard web UI on a *single node*, and also show steps to launch our first instance (virtual machine).

Many of the examples here require 'sudo' to be properly configured, please see Configuring Sudo if you need help.

Enable EPEL repositories

Follow EPEL instructions, and also enable the epel-testing repository.

If on RHEL6, do not forget to enable 'optional' repository as described there!

First let's pull in some preliminary dependencies

$> sudo yum install -y openstack-utils qpid-cpp-server avahi

Adjust qpidd authentication

Ensure auth=no is set in /etc/qpidd.conf

Disable mDNS (optional)

As per Bug #746111, unless you have installed and are using avahi-libs, you should disable mdns_adv in /etc/libvirt/libvirtd.conf

$> sudo sed -i 's/#mdns_adv = 0/mdns_adv = 0/' /etc/libvirt/libvirtd.conf

(Note: This has been fixed upstream, but may still affect older versions)

Setup DHCP control depending on distro

On RHEL 6.2 or below:

 $> sudo openstack-config --set /etc/nova/nova.conf DEFAULT force_dhcp_release False

On RHEL 6.3 or above:

 $> sudo yum install dnsmasq-utils  # from the Red Hat optional channel

Start support services

Nova requires dbus to be running:

$> sudo service messagebus start && sudo chkconfig messagebus on

Install and Setup OpenStack on a single node

This script will install nova, glance, quantum, cinder, swift, keystone, dashboard. Note it configures and enables all but the quantum service at this time

 sudo openstack-demo-install

Now copy the keystonerc file created by the install script above to your home directory, so that it can be easily sourced to provide the credentials used by the various OpenStack command line utilities.

 sudo cp /root/keystonerc ~

Installing within a VM

If you are testing OpenStack in a virtual machine nova needs to be configured to use qemu without KVM and hardware virtualization. Note nested virtualization will be the much slower TCG variety, and you should provide lots of memory to the top level guest, as the openstack created guests default to 2GM RAM with no overcommit. Note openstack-demo-install does this automatically:

 openstack-config --set /etc/nova/nova.conf DEFAULT libvirt_type qemu

To avoid Folsom issue https://bugzilla.redhat.com/show_bug.cgi?id=858216 you'll need to make this config change. Note openstack-demo-install does this automatically:

 openstack-config --set /etc/nova/nova.conf DEFAULT libvirt_cpu_mode none

If you're running with libvirt < v0.9.13-66 then you'll need to do this to avoid https://bugzilla.redhat.com/show_bug.cgi?id=813735

sudo ln -s /usr/libexec/qemu-kvm /usr/bin/qemu-system-x86_64
sudo service libvirtd restart
sudo service openstack-nova-compute restart

Enable external access to OpenStack Dashboard

To open up the firewall ports for HTTP:

$> sudo lokkit -p http:tcp
$> sudo lokkit -p https:tcp

The dashboard should be accessible at http://$HOST/dashboard . Account and password should be what you configured for the keystone setup, which is displayed when openstack-demo-install completes.

Basic Folsom Operations

The operational instructions below have not been updated for Folsom at present. For Folsom specific details please see OpenStack Folsom setup and recipes

Basic OpenStack Operations

The items below have only been tested on the Essex version of OpenStack, and may need adjustment for OpenStack Folsom.

Setup volume storage

The openstack-cinder-volume service requires an LVM Volume Group called cinder-volumes. We simply create this using a loopback sparse disk image.

$> sudo dd if=/dev/zero of=/var/lib/nova/cinder-volumes.img bs=1M seek=20k count=0
$> sudo vgcreate cinder-volumes $(sudo losetup --show -f /var/lib/nova/cinder-volumes.img)

Nova Network Setup

To create the network do:

$> sudo nova-manage network create demonet 10.0.0.0/24 1 256 --bridge=demonetbr0

NB the network range here, should *not* be the one used on your existing physical network. It should be a range dedicated for the network that OpenStack will configure. So if 10.0.0.0/24 clashes with your local network, pick another range

Register an Image

To run an instance, you are going to need an image. There are prebuilt Fedora 17 JEOS (Just Enough OS) images that can be downloaded. Note this will download a 250MB image (without a progress bar)

 $> glance add name=f17-jeos is_public=true disk_format=qcow2 container_format=ovf \
      copy_from=http://berrange.fedorapeople.org/images/2012-11-15/f17-x86_64-openstack-sda.qcow2

Launch an Instance

Create a keypair:

$> nova keypair-add mykey > oskey.priv
$> chmod 600 oskey.priv

Configure key injection mode, to allow guestfs to inject into multiple guest types:

$> sudo openstack-config --set /etc/nova/nova.conf DEFAULT libvirt_inject_partition -1
$> sudo service openstack-nova-compute restart

Note: see BZ#876452 for a problem with file injection, including some workarounds.

Launch an instance:

$> nova boot myserver --flavor 2 --key_name mykey \
     --image $(glance index | grep f17-jeos | awk '{print $1}')

And then observe the instance running, observe the KVM VM running and SSH into the instance:

$> sudo virsh list
$> nova list
$> ssh -i oskey.priv root@10.0.0.2  # use ec2-user instead of root if launching the image f17-jeos
$> nova console-log myserver
$> nova delete myserver

Additional Functionality

Using Eucalyptus tools

Set up a rc file for EC2 access (this expects a prior keystone configuration)

$> . ./keystonerc
$> USER_ID=$(keystone user-list | awk '/admin / {print $2}')
$> ACCESS_KEY=$(keystone ec2-credentials-list --user-id $USER_ID | awk '/admin / {print $4}')
$> SECRET_KEY=$(keystone ec2-credentials-list --user-id $USER_ID | awk '/admin / {print $6}')
$> cat > novarc <<EOF
export EC2_URL=http://localhost:8773/services/Cloud
export EC2_ACCESS_KEY=$ACCESS_KEY
export EC2_SECRET_KEY=$SECRET_KEY
EOF
$> chmod 600 novarc
$> . ./novarc 

You should now be able to launch an image:

$> euca-run-instances f17-jeos -k nova_key
$> euca-describe-instances
$> euca-get-console-output i-00000001
$> euca-terminate-instances i-00000001

Images

Rather than the prebuilt Fedora 16 JEOS image referenced above, there are other image options.

  1. Building a Fedora 16 JEOS image using Oz
  2. Downloading ttylinux based minimal images used by OpenStack developers for testing

Building Fedora 16 JEOS Images With Oz

You can very easily build an image using Oz. First, make sure it's installed:

$> sudo yum install /usr/bin/oz-install

Create a template definition file called f16-jeos.tdl containing:

<template>
 <name>fedora16_x86_64</name>
 <description>My Fedora 16 x86_64 template</description>
 <os>
  <name>Fedora</name>
  <version>16</version>
  <arch>x86_64</arch>
  <install type='url'>
    <url>http://download.fedoraproject.org/pub/fedora/linux/releases/16/Fedora/x86_64/os/</url>
  </install>
 </os>
 <commands>
   <command name='setup-rc-local'>
sed -i 's/rhgb quiet/console=ttyS0/' /boot/grub/grub.conf
 
cat >> /etc/rc.local &lt;&lt; EOF
if [ ! -d /root/.ssh ]; then
  mkdir -p /root/.ssh
  chmod 700 /root/.ssh
fi
 
# Fetch public key using HTTP
ATTEMPTS=10
while [ ! -f /root/.ssh/authorized_keys ]; do
    curl -f http://169.254.169.254/latest/meta-data/public-keys/0/openssh-key > /tmp/aws-key 2>/dev/null
    if [ \$? -eq 0 ]; then
        cat /tmp/aws-key >> /root/.ssh/authorized_keys
        chmod 0600 /root/.ssh/authorized_keys
        restorecon /root/.ssh/authorized_keys
        rm -f /tmp/aws-key
        echo "Successfully retrieved AWS public key from instance metadata"
    else
        FAILED=\$((\$FAILED + 1))
        if [ \$FAILED -ge \$ATTEMPTS ]; then
            echo "Failed to retrieve AWS public key after \$FAILED attempts, quitting"
            break
        fi
        echo "Could not retrieve AWS public key (attempt #\$FAILED/\$ATTEMPTS), retrying in 5 seconds..."
        sleep 5
    fi
done
EOF
   </command>
 </commands>
</template>
 

Then simply do:

$> sudo oz-install -d4 -u f16-jeos.tdl

Once built, you simply have to register the image with Nova:

$> glance add name=f16-jeos is_public=true container_format=bare disk_format=raw < /var/lib/libvirt/images/fedora16_x86_64.dsk
$> glance index

The last command should return a list of the images registered with the Glance image registry.

Downloading Existing Images

If you don't need a functioning Fedora 16 and want the smallest possible images, just download this set of images commonly used by OpenStack developers for testing and register them with Nova:

$> mkdir images
$> cd images
$> curl -L http://github.com/downloads/citrix-openstack/warehouse/tty.tgz | tar xvfzo -
$> glance add name=aki-tty disk_format=aki container_format=aki is_public=true < aki-tty/image
$> glance add name=ami-tty disk_format=ami container_format=ami is_public=true < ami-tty/image
$> glance add name=ari-tty disk_format=ari container_format=ari is_public=true < ari-tty/image

Then to start the image:

$> euca-run-instances ami-tty --kernel aki-tty --ramdisk ari-tty -k mykey

Volumes

If you use the Chrome browser, kill it before embarking on this section, as it has been known to cause the lvcreate command to fail with 'incorrect semaphore state' errors.

Note when setting up volumes in production, make sure you don't put your volume nodes on the same network as your guests when using the default volume driver, as all the iscsi targets are discoverable and accessible without any security.

Start the SCSI target daemon

$> sudo systemctl start tgtd.service
$> sudo systemctl enable tgtd.service

Create a new 1GB volume

$> VOLUME=$(euca-create-volume -s 1 -z nova | awk '{print $2}')

View the status of the new volume, and wait for it to become 'available'

$> watch "euca-describe-volumes | grep $VOLUME | grep available"

Re-run the previously terminated instance if necessary:

$> INSTANCE=$(euca-run-instances f17-jeos -k mykey | grep INSTANCE | awk '{print $2}')

or:

$> INSTANCE=$(euca-run-instances ami-tty --kernel aki-tty --ramdisk ari-tty -k mykey | grep INSTANCE | awk '{print $2}')

Make the storage available to the instance (note -d is the device on the compute node)

$> euca-attach-volume -i $INSTANCE -d /dev/vdc $VOLUME

ssh to the instance and verify that the vdc device is listed in /proc/partitions

$> cat /proc/partitions

Now make the device available if /dev/vdc is not already present

$> mknod /dev/vdc b 252 32

Create and mount a file system directly on the device

$> mkfs.ext3 /dev/vdc
$> mkdir /mnt/nova-volume
$> mount /dev/vdc /mnt/nova-volume

Display some file system details

$> df -h /dev/vdc

Create a temporary file:

$> echo foo > /mnt/nova-volume/bar

Terminate and re-run the instance, then re-attach the volume and re-mount within the instance as above. Your temporary file will have persisted:

$> cat /mnt/nova-volume/bar

Unmount the volume again:

$> umount /mnt/nova-volume

Exit from the ssh session, then detach and delete the volume:

$> euca-detach-volume $VOLUME
$> euca-delete-volume $VOLUME

Floating IPs

You may carve out a block of public IPs and assign them to instances.

First thing you need to do is make sure that nova is configured with the correct public network interface. The default is eth0, but you can change it by e.g.

$> sudo openstack-config-set /etc/nova/nova.conf DEFAULT public_interface em1
$> sudo systemctl restart openstack-nova-network.service

Then you can do e.g.

$> sudo nova-manage floating create 172.31.0.224/28
$> euca-allocate-address
$> euca-associate-address -i i-00000012 172.31.0.224
$> ssh -i nova_key.priv root@172.31.0.224
$> euca-disassociate-address 172.31.0.224
$> euca-release-address 172.31.0.224

VNC access

To setup VNC access to guests through the dashboard:

nova-novncproxy reads some parameters in /etc/nova/nova.conf file. First you need to configure your cloud controller to enable VNC

novncproxy_host = 0.0.0.0
novncproxy_port = 6080

and in the nova compute nodes you need something like this

novncproxy_base_url=http://NOVNCPROXY_FQDN:6080/vnc_auto.html
vnc_enabled=true
vncserver_listen=COMPUTE_FQDN
vncserver_proxyclient_address=COMPUTE_FQDN

You should also make sure that openstack-nova-consoleauth has been started on the controller node:

$ controller> sudo /etc/init.d/openstack-nova-consoleauth restart

After restarting nova services on both nodes the newly created machines will run the qemu-kvm with a parameter -vnc compute_fqdn:display_number. Then after starting the novncproxy and connecting to the dashboard it will discover the host and point to the novncproxy with the appropriate values and connect to the VM.

Note ensure than the iptables entries for VNC ports (5900+DISPLAYNUMBER) are allowed.

Migrate and Resize

This is implemented currently by transferring the images between compute nodes over ssh. Therefore currently you need to make these adjustments on each compute node to allow that.

  • Allow logins for the nova user
 # usermod -s /bin/bash nova
 # su - nova
 $ chcon -u system_u -r object_r -t user_home_t .
 $ mkdir -p -m 700 --context=system_u:object_r:ssh_home_t:s0 .ssh && cd .ssh
  • Disable host identity checking by adding this to ssh config
 $ cat > config <<EOF
 Host * 
   StrictHostKeyChecking no 
   UserKnownHostsFile=/dev/null 
 EOF
  • Generate and distribute ssh key
 $ ssh-keygen -f id_rsa -b 1024 -P ""
 $ scp /var/lib/nova/.ssh/id_rsa.pub root@otherHost:/var/lib/nova/.ssh/authorized_keys
 # chown nova:nova /var/lib/nova/.ssh/authorized_keys

To improve the SELinux config in future the above context manipulations will need to be done centrally, so that restorecon works as expected.

Live Migration of VM instances

First note the official OpenStack docs on the feature and a doc patch distinguishing libvirt live migration.

  • Seting NFS server
    • Make an nfs share with no_root_squash (nova uses root-wrap to chown the instance's disk to qemu:qemu)
    • Make nova user and qemu user:
nova:x:162:162::/home/nova:/bin/bash
qemu:x:107:107::/home/qemu:/bin/bash
    • chown -R nova:nova /the/nfs/share
  • Mount nfs share on each host at /var/lib/nova/instances
  • Configure libvirt
    • See the libvirt wiki as to how to create certificates.
    • Edit /etc/libvirt/libvirt.conf
listen_tcp = 1
tcp_port = "16509"
auth_tcp = "none"
    • Edit /etc/sysconfig/libvirtd
LIBVIRTD_ARGS="--listen"
  • Restart libvirtd & OpenStack compute services

Deployment

Adding a Compute Node

Okay, everything so far has been done on a single node. The next step is to add another node for running VMs.

Let's assume the machine you've set up above is called 'controller' and the new machine is called 'node'.

First, open the qpid, MySQL, Nova API and iSCSI ports on controller:

$ controller> sudo lokkit -p 3306:tcp
$ controller> sudo lokkit -p 5672:tcp
$ controller> sudo lokkit -p 9292:tcp
$ controller> sudo lokkit -p 3260:tcp
$ controller> sudo service libvirtd reload

Then make sure that ntp is enabled on both machines:

$> sudo yum install -y ntp
$> sudo service ntpd start
$> sudo chkconfig ntpd on

Install libvirt and nova on node:

$ node> sudo yum install --enablerepo=epel-testing openstack-nova python-keystone openstack-utils
$ node> sudo service libvirtd start
$ node> sudo chkconfig libvirtd on
$ node> sudo setenforce 0

Configure nova so that node can find the services on controller:

$ node> sudo openstack-config --set /etc/nova/nova.conf DEFAULT qpid_hostname controller
$ node> sudo openstack-config --set /etc/nova/nova.conf DEFAULT sql_connection mysql://nova:nova@controller/nova
$ node> sudo openstack-config --set /etc/nova/nova.conf DEFAULT glance_api_servers controller:9292
$ node> sudo openstack-config --set /etc/nova/nova.conf DEFAULT iscsi_ip_prefix 172.31.0.107
$ node> sudo openstack-config --set /etc/nova/nova.conf DEFAULT auth_strategy keystone

(The {{{iscsi_ip_prefix}}} value is the IP address of the controller node)

Configure the Network interfaces The bridge name should match what use used in the nova-manage command on the controller

$ node> sudo openstack-config --set /etc/nova/nova.conf DEFAULT flat_network_bridge demonetbr0

The device which should be moved onto the bridge (nova will set up this bridge, once it done you can view it with the brctl command

$ node> sudo openstack-config --set /etc/nova/nova.conf DEFAULT flat_interface eth0
$ controller> sudo openstack-config --set /etc/nova/nova.conf DEFAULT flat_interface eth0
$ node> brctl show

Enable the compute service:

$ node> sudo service openstack-nova-compute start

Now everything should be running as before, except the VMs are launched either on controller or node. You will only be able to ping/ssh to vm's from the controller node.

Manual Setup of MySQL

As of openstack-nova-2011.3-9.el6 and openstack-nova-2011.3-8.fc16, openstack-nova is now set up to use MySQL by default. If you're updating an older installation or prefer to set up MySQL manually instead of using the openstack-nova-db-setup script, this section shows how to do it.

First install and enable MySQL:

$> sudo yum install -y mysql-server
$> sudo service mysqld start
$> sudo chkconfig mysqld on

Set a password for the root account and delete the anonymous accounts:

$> mysql -u root
mysql> update mysql.user set password = password('iamroot') where user = 'root';
mysql> delete from mysql.user where user = '';

Create a database and user account specifically for nova:

mysql> create database nova;
mysql> create user 'nova'@'localhost' identified by 'nova';
mysql> create user 'nova'@'%' identified by 'nova';
mysql> grant all on nova.* to 'nova'@'%';

(If anyone can explain why nova@localhost is required even though the anonymous accounts have been deleted, I'd be very grateful :-)

Then configure nova to use the DB and install the schema:

$> sudo openstack-config-set /etc/nova/nova.conf DEFAULT sql_connection mysql://nova:nova@localhost/nova
$> sudo nova-manage db sync

As a final sanity check:

$> mysql -u nova -p nova
Enter password:
mysql> select * from migrate_version;

Miscellaneous

Smoke Tests

Nova comes with a selection of fairly basic smoke tests which you can run against your installation. It can be useful to use these to sanity check your configuration.

First off, you need the nova-adminclient python library which isn't yet packaged:

$> sudo yum install python-pip
$> sudo pip-python install nova-adminclient

Then you need a user and project both named admin:

$> sudo nova-manage user admin admin
$> sudo nova-manage project create admin admin
$> sudo nova-manage project zipfile admin admin
$> unzip nova.zip
$> . ./novarc

Make sure you have the tty images imported as described above. You also need a block of floating IPs created, also as described above.

Then, run the tests from a fedpkg checkout:

$> fedpkg clone openstack-nova
$> cd openstack-nova
$> fedpkg switch-branch f18
$> fedpkg prep
$> cd nova-2012.2/smoketests
$> python ./run_tests.py

All the tests should pass.

If you run into import errors such as:

ImportError: No module named nose

or:

ImportError (No module named paramiko)

simply install the missing dependency as follows:

$> sudo yum install -y python-nose.noarch
$> sudo yum install -y python-paramiko.noarch

Cleanup

While testing OpenStack, you might want to delete everything related to OpenStack and start testing with a clean slate again.

Here's how. First, make sure to terminate all running instances:

$> euca-terminate-instances ...

Double check that you have no lingering VMs, perhaps saved to disk:

$> virsh list --all && virsh undefine
$> rm -f /var/lib/libvirt/qemu/save/instance-00000*

Then stop all the services:

$> for iii in /usr/lib/systemd/system/openstack-*.service; do sudo systemctl stop $(basename $iii); done

Delete all the packages:

$> sudo yum erase python-glance python-nova* python-keystone* openstack-swift* memcached

Delete the nova and keystone tables from the MySQL DB:

$> mysql -u root -p -e 'drop database nova;'
$> mysql -u root -p -e 'drop database keystone;'

Delete the nova-volumes VG:

$> sudo vgchange -an nova-volumes
$> sudo losetup -d /dev/loop0
$> sudo rm -f /var/lib/nova/nova-volumes.img

Take down the bridge and kill dnsmasq:

$> sudo ip link set demonetbr0 down
$> sudo brctl delbr demonetbr0
$> sudo kill -9 $(cat /var/lib/nova/networks/nova-demonetbr0.pid)

Remove all directories left behind from the packages:

$> sudo rm -rf /etc/{glance,nova,swift,keystone,openstack-dashboard} /var/lib/{glance,nova,swift,keystone} /var/log/{glance,nova,swift,keystone} /var/run/{glance,nova,swift,keystone}

Remove swift storage device (if we don't want the data)

$> sudo umount /srv/node/partitions
$> sudo losetup -d $DEVICE
$> rm /tmp/swiftstorage 

Finally, restart iptables to clear out all rules added by Nova. You also need to reload libvirt's iptables rules:

$> sudo service iptables restart
$> sudo service libvirtd restart