No edit summary |
|||
Line 20: | Line 20: | ||
The developer can also specify the location in source control of a specfile fragment that can be used to package the jars/wars/ears/etc. generated by the Maven build into a rpm. The specfile fragment can use the [http://cheetahtemplate.org/ Cheetah] templating language to perform substitutions, conditionalize parts of the specfile, or execute simple logic. The template is passed a defined set of data, including the name, version, and release of the build, and a list of all output generated by the Maven build. Once the template has been processed, it is placed into a directory with the output of the Maven build and rpmbuild is run to generate the "source rpm". This srpm will actually contain the binary jars generated by the Maven build. Once the srpm is generated, it is built in a pristine mock chroot like any other rpm built in Koji. Once this "wrapper rpm" build is complete, the rpms are associated with the existing Koji build and are available for testing and distribution, like any other rpms in Koji. | The developer can also specify the location in source control of a specfile fragment that can be used to package the jars/wars/ears/etc. generated by the Maven build into a rpm. The specfile fragment can use the [http://cheetahtemplate.org/ Cheetah] templating language to perform substitutions, conditionalize parts of the specfile, or execute simple logic. The template is passed a defined set of data, including the name, version, and release of the build, and a list of all output generated by the Maven build. Once the template has been processed, it is placed into a directory with the output of the Maven build and rpmbuild is run to generate the "source rpm". This srpm will actually contain the binary jars generated by the Maven build. Once the srpm is generated, it is built in a pristine mock chroot like any other rpm built in Koji. Once this "wrapper rpm" build is complete, the rpms are associated with the existing Koji build and are available for testing and distribution, like any other rpms in Koji. | ||
=== Why should we use it? === | |||
Maven has emerged as the defacto standard Java build tool, and more and more projects are using it upstream. However, the Maven build model relies on downloading pre-built binary jars from potentially untrusted repositories on the Internet, with no link back to the source code and no way to verify who built what when. This incompatible with the objectives and policies of the Fedora Project, and incompatible with a robust, reliable, reproduceable, and auditable build and release process. Koji-Maven was designed to address these issues by managing all Maven artifacts locally, and providing a link between the source code, the binary jars, and the build process and environment. |
Revision as of 16:35, 17 September 2009
Koji Maven Support
Koji Maven Support (hereafter referred to as Koji-Maven) is an attempt to bring the same security, auditability, and reproduceability to Java builds that Koji brings to rpm builds, without having to radically alter the build processes of upstream Java projects.
What is it?
Koji-Maven is a wrapper around the Maven build tool, in the same way Koji is a wrapper around the mock build tool. Koji-Maven manages the repository of jars from which Maven pulls build dependencies, and tracks the build environment, recording what jar files are downloaded into the build environment. Build output is added to the repository for use by subsequent builds, and build logs are stored centrally. A "wrapper" rpm can be generated that contains exactly the same jars generated by the Maven build, and can then be used by subsequent rpm-based builds. And rpm-based builds which generate jars can add those jars to the Maven repository for use by subsequent Maven builds.
How does it work?
Package Management
Koji-Maven manages Java artifacts (.jar, .war, .ear, etc. files) natively, in much the same way that Koji manages .rpm files. Koji-Maven extends the concept of a Koji build so it can be associated with both rpms and Java artifacts. These builds may then be added to a tag, and repositories can be created from groups of tags. For each tag associated with a build target, Koji-Maven can be configured to create a Maven repository, in addition to the yum repository. This repo will contain all Java artifacts associated with a build that is associated with that tag (or another tag in the group). Each tag can be configured to include only artifacts from the "latest" build of a given package (consistent with the yum repositories), or to include all versions of a package associated with the tag. This is required because a single Maven build may depend on more than one version of the same package. Once the repositories are created they are used by the builders for creating an environment suitable for building other packages.
Building
A Koji-Maven build environment is created the same way as a standard Koji build environment, by using mock to install a group of packages, including "maven2" (which will do the actual building), into a chroot. The source code and any patches are then downloaded from a source control system and the patches applied. A settings file is written into the chroot that points Maven at the Koji-managed Maven repo, and uses that as the override for all project-defined repos (using <mirrorOf>*<mirrorOf>
). /usr/bin/mvn
is then run against the source tree. The source tree must have a .pom file in its top-level directory for Maven to process it.
The Maven build is performed in two steps. First /usr/bin/mvn dependency:resolve-plugins
is called. This downloads all necessary plugins from the Koji-managed Maven repo into the local Maven repo. Koji-Maven then scans the local repo to determine which artifacts have been downloaded, and records that information in the database. If all plugins are resolved successfully, then /usr/bin/mvn deploy
is called to perform the actual build. Once that is done the local repository is scanned again to identify any additional build dependencies that were downloaded, and records those as well. The build output is then uploaded to the hub where it is processed, recorded in the database, and added to the Koji-managed Maven repo for later distribution or use by other builds.
The developer can also specify the location in source control of a specfile fragment that can be used to package the jars/wars/ears/etc. generated by the Maven build into a rpm. The specfile fragment can use the Cheetah templating language to perform substitutions, conditionalize parts of the specfile, or execute simple logic. The template is passed a defined set of data, including the name, version, and release of the build, and a list of all output generated by the Maven build. Once the template has been processed, it is placed into a directory with the output of the Maven build and rpmbuild is run to generate the "source rpm". This srpm will actually contain the binary jars generated by the Maven build. Once the srpm is generated, it is built in a pristine mock chroot like any other rpm built in Koji. Once this "wrapper rpm" build is complete, the rpms are associated with the existing Koji build and are available for testing and distribution, like any other rpms in Koji.
Why should we use it?
Maven has emerged as the defacto standard Java build tool, and more and more projects are using it upstream. However, the Maven build model relies on downloading pre-built binary jars from potentially untrusted repositories on the Internet, with no link back to the source code and no way to verify who built what when. This incompatible with the objectives and policies of the Fedora Project, and incompatible with a robust, reliable, reproduceable, and auditable build and release process. Koji-Maven was designed to address these issues by managing all Maven artifacts locally, and providing a link between the source code, the binary jars, and the build process and environment.