
W
ell, we all know what
virtualisation is about—we've
read and heard of it over and over
again. But let's look at it from the

view point of the open source world.
Virtualisation means the simulation of a

computer system, in software. The virtualisation
software creates an environment for a guest,
a complete OS, to execute within this created
world. This means the view that should get
exported to the guest should be of a complete
computer system—with the processor, system
peripherals, devices, buses, memory and so on.
The virtualisation software can be strict about
what view to export to the guest, for example,
the processor and processor features, types of
devices, buses exported to the guest, etc, or it
can be flexible with the user getting a choice to
select individual components and parameters.

There are some constraints to creating a
virtualised environment or a set of sufficient
requirements, as has been noted by Popek and

Goldberg in their paper on virtual machine
monitors.

Fidelity: Software running in a virtualised
environment should not be able to detect it
is running on a virtualised system.
Containment: Activities within a virtual
machine (VM) should be contained within the
VM itself without disturbing the host system.
A guest should not cause the host or other
guests running on the host to malfunction.
Performance: Performance is crucial to how
the user sees the utility of the virtualising
environment. In this age of extremely fast
and affordable general-purpose computer
systems, if it takes a few seconds for some
input action to get registered in a guest, no
one will be interested in using the virtual
machine at all.
Stability: The virtualisation software itself
should be stable enough to handle the guest
OS and any quirks it may exhibit.
There are several reasons why one would









Virtualisation and
Open Source

your PC
What Makes It the Right Match?
Virtualisation continues to be a buzzword. The idea isn’t new in itself; IBM mainframes have always
had to have a hypervisor. It’s in the news now because even simple desktops can now act as virtual
machine hosts. A lot of possibilities have opened up as a result. Let’s take a brief tour of what
virtualisation means, in its classic sense, and look at why open source virtualisation is going to win.

Im
ag

e
(c

) g
ao

bo
 [w

w
w

.fl
ic

kr
.c

om
/p

ho
to

s/
ga

ob
o]

. R
eu

se
d

un
de

r t
he

 te
rm

s o
f C

re
at

iv
e

C
om

m
on

s A
ttr

ib
ut

io
n-

N
o

D
er

iv
at

iv
e

W
or

ks
 2

.0
 G

en
er

ic
 L

ic
en

se
.

28  |  MARCH 2010  |  LINUX For You  |  www.LinuxForU.com

Admin  |  Overview ___

www.LinuxForU.com  |  LINUX For You  |  MARCH 2010  |  29

___ Overview  |  Admin

want virtualisation. For data centres, it makes sense to run
multiple servers (Web, mail, etc,) on a single machine.
These servers are mostly under-utilised, so clubbing
them on one machine with a VM for each of the existing
machines enables fewer machines, less rack space and
lower electricity consumption.

For enterprises, serving users' desktops on a VM simplifies
management, IT servicing, security considerations and costs,
by virtue of the reduced expenditure on desktops.

For developers, testing code written for different
architectures or target systems becomes easier, since access to
the actual system becomes optional. For example, a new mobile
phone platform can be virtualised on a developer machine
rather than actually deploying the software on the phone
hardware each time, allowing for the software to be developed
along with the hardware. The virtualised environment can also
be used as validation for the hardware platform itself, before
going into production, to avoid the costs that arise later due to
changes that might be needed in the hardware.

There are several such examples that can be cited for
any kind of application or use-case. It's not impossible to
imagine a virtualised system being beneficial anywhere a
computer is used.

Now is a good time to get acquainted with some of the
terms (the mandatory alphabet soup) that we'll be using
throughout the article:

VM – virtual machine
VMM – virtual machine monitor
Guest OS – the OS that is run within a VM
Host OS – the OS that runs on the physical computer
system and hosts guests
Paravirtualised guest – the guest OS that is modified to
have the knowledge of a VMM
Full virtualisation – the guest OS is run unmodified in this
environment
Hypervisor – an analogous term for a VMM
Hypercall – infrastructure, via which a paravirtualised
guest and the VMM communicate

Types of VMM
There are several virtual machine monitors available. They
differ in various aspects like scope, motivation, and method of
implementation. A few types of monitor software are:

‘Native’ hypervisors: These VMMs have an OS associated
with them. A complete software-based implementation
will need a scheduler, a memory management subsystem
and an IO device model to be exported to the guest OS.
Examples are: VMWare ESX server, Xen, KVM, and IBM
mainframes. In IBM mainframes, the VMM is an inherent
part of the architecture.
Containers: In this type of virtualisation, the guest OS and
the host OS share the same kernel. Different namespaces
are allocated for different guests. For example, the process
identifiers, file descriptors, etc, are virtualised in the sense
that a PID obtained for a process in the guest OS will only
be valid within that guest. The guest can have a different

















userland (for example, a different distribution) from the
host. Examples are OpenVZ, FreeVPS and Linux-Vserver.
Emulation: Each and every instruction in the guest is
emulated. It is possible to run code compiled for different
architectures on a computer—for example, running ARM
code on a PowerPC machine. Other examples are qemu
and pearpc. qemu supports multiple CPU types, and it runs
ARM code under x86 as well as x86 under x86, whereas
pearpc only emulates the PPC platform.

Virtualisation on x86
Virtualising the x86 architecture is difficult to do since
the instruction and register sets are not compatible with
virtualisation. Not all accesses to privileged instructions or
registers raise a trap. So we either have to emulate the guest
entirely or patch it at run-time to behave in a particular way.
This was true till about four years back, before virtualisation-
specific instructions were added to the architecture.

With the two leading x86 processor manufacturers, Intel
and AMD, adding virtualisation extensions to their processors,
virtualising the x86 platform seamlessly has become easier.
The ideas behind their virtualisation extensions are more
or less the same, with the implementation, instructions and
register sets being slightly different.

The new extensions add a new mode, the 'guest-mode', in
addition to the user-mode and kernel-mode that we had (ring
-1 in addition to the rings 0-3, with the hypervisor residing in
ring -1). The implementations also enable support for hiding
the privileged state. Disabling interrupts while in the guest
mode will not affect the host-side interrupts in any way.

Open source virtualisation
Now that we've seen what virtualisation is about and what's
needed on the software side to present a virtual machine to a
guest operating system, let's talk about the strides open source
software has been making in this field.

Xen was the first open-source hypervisor to be announced.
The Xen project was started when hardware extensions to
virtualisation were not yet available, and the developers took
the paravirtualisation approach towards virtualising a system.
The Xen team created a new hypervisor, taking bits from
the Linux kernel, to run modified Linux guests. A privileged
Linux guest called the Dom0, has access to the system
hardware and arbitrates the access to physical resources by
guest operating systems.

The Xen project got wide acceptance and was backed by a
large number of companies—developers from IBM, Red Hat,
Novell, Intel, AMD, all contributed to the Xen code base. It
was even included in enterprise Linux offerings from various
distributions as the supported virtualisation technology.

When the hardware manufacturers on x86 started adding
virtualisation extensions to the processors, unmodified guests
could be made to run on hypervisors. The deficiencies of the
x86 instruction set were masked by these advances.

With this advancement, along came a new line of
thought: why have a separate hypervisor, when all a



28  |  MARCH 2010  |  LINUX For You  |  www.LinuxForU.com

Admin  |  Overview ___

www.LinuxForU.com  |  LINUX For You  |  MARCH 2010  |  29

___ Overview  |  Admin

hypervisor has to do is schedule guests, manage memory and
arbitrate access to hardware?

The Linux kernel has been doing all of this for years.
Therefore, the kernel code could easily be leveraged to
perform all these tasks. And the addition of code to handle
the new CPU instructions and state would make Linux itself
function as the hypervisor and host VMs.

The KVM project was started for doing just this, and
it was evident by the quick developer acceptance that this
really is how virtualisation on Linux was finally going to be
acceptable. The KVM project was announced in late 2006
and was accepted the same year in Linus' kernel tree. On
the other hand, the Xen Dom0 code has yet to find upstream
acceptance. The Xen hypervisor, itself bearing Linux code,
will always continue to be a separate project.

The open source advantage
A commonly-cited advantage of open source software is the
‘more eyeballs’ concept. As more people look at the code, bugs
become more obvious and get fixed faster, often before the code
enters a stable release. This is definitely true. However, there are
other advantages when it comes to open source software with
large communities, beyond just more eyeballs.

If one follows the LWN.net "Who develops Linux"
articles, it's clear that most of the developers are sponsored to
work on Linux by companies. It isn't a big surprise to people
any more that companies are running businesses and making
profits by relying on open source software. Linux already
runs on the widest array of platforms—it can run on simple
embedded devices and also on big supercomputers, including
everything in between. The developers come from not just
one part of the world, but from everywhere. The experience,
culture and insights they all bring in are invaluable.

Contrast this to a proprietary OS maker. Perhaps all
the developers sit in one campus and are probably used to
following a particular train of thought. Just one company
cannot match the resources that 50 companies (and, of
course, the individuals in the community) put together to
collaboratively enhance the OS.

Red Hat, IBM, Novell, Intel, AMD, HP, Fujitsu,
Oracle, Nokia and Google, all figure on the latest LWN.net
compilation for companies that are funding developers to
contribute to the Linux kernel. The sheer scale at which the
development happens is mind-boggling.

This, however, does not mean that companies can push
whatever code they want to into the repositories. Merit
wins. There is a peer review of all the patches that flow in.
There are people who deeply care about the code that gets
accepted. Almost all the patches submitted the first time
have to be adjusted after review comments by others. There
hardly are patches that go in their unmodified form from
the time they were first sent out for review. In many cases,
people maintaining subsystems that reject patch submissions
could be working for the same company that's promoting
the patches. And there's no love lost. Everyone involved
understands the prime cause: to create better software.

People understand this, and the companies involved
understand this too.

Now why does all this matter in the virtualisation
perspective? It's simple. The Linux kernel itself is a
hypervisor. Any advances in Linux, the operating system,
are directly beneficial to Linux, the hypervisor. By using the
KVM technology, guests running on top of KVM can enjoy
the benefits immediately when patches get accepted to Linux.
KVM guests can already enjoy the support of 64 vCPUs (and
more!), huge-page backed memory, a wide range of memory
over-commit options, NUMA support and so on. And KVM
is just four years old. It has taken other projects many more
years to reach the state they currently are in, and even then,
they do not offer some of the features that KVM offers. It's an
interesting exercise for the reader: compare the feature set as
announced in releases of virtualisation software one year back
to the current set. The number of features and enhancements
KVM can provide in one year's time, others would only dream
of achieving in five.

This comes as no surprise. There are two basic mindsets
at play. First, the UNIX one: 'Do one thing and do it right'.
The KVM developers just focused on providing the best
support to exploit the hardware support for virtualisation
and left the CPU scheduling, memory management, etc,
to Linux. KVM also leveraged the QEMU project heavily
that provides a device model. The virtual computer that
gets exposed to the guest is provided by QEMU, and KVM
developers have heavily updated the upstream QEMU code
to enable it to support modern devices, KVM-based guests
and a lot of optimisation.

The second philosophy is to contribute as much as
possible to upstream software, fighting the urge to ship
a forked copy of the codebase with some features that
would be deemed controversial upstream, or which would
take a longer time to gain acceptance. This might result in
some features getting delayed as discussions pan out, and
developers pitch in with their opinions on how to do things
the ‘right’ way. But, in the end, the best technical solution
wins and maintaining the solution that's accepted by all is
easier in the long run. With most enterprise Linux vendors
offering seven-year support guarantees, this becomes a big
plus. This is because keeping the private functionality in the
stable offering working, while also backporting fixes and
optimisations from an upstream codebase that changes more
and more each day, would soon become a nightmare for the
maintainers of the enterprise software.

Just comparing the two open source virtualisation
solutions, Xen and KVM, shows us the stark contrast
in these principles and the benefits of collaborative
development. 

By: Amit Shah
The author is part of the virtualisation team at Red Hat and
is excited to be a part of the technology that’s rediscovering
commodity x86 servers.

30  |  MARCH 2010  |  LINUX For You  |  www.LinuxForU.com

Admin  |  Overview __

