
GUIDELINES

FOR

CONTEXTUALIZATION

Shankar Prasad Venkateshbhat
Ani Peter
Nilamdyuti Goswami

Guidelines for Contextualization 1

CONTENTS

Preface 3

Need of contextualization 4

Scenarios requiring contextualization 5-9

Ways of writing context related messages 10-11

Implementing context in source codes 12-15

References 16

Guidelines for Contextualization 2

PREFACE

"Hang not, leave him" - The judge pronounced to free a man off to
life. But the verdict was written to the jailer as "Hang, not leave him"
misplacing the coma which ended up in killing the innocent man. Thus its
called "A coma killed a man". We can see how important it is to place
punctuation in the correct position to communicate correctly and clearly,
so that the recipient gets the exact meaning of what is conveyed. Similarly,
describing and detailing on a subject without understanding the exact
context may end up in confusions and not communicating the exact and
expected meaning. Translating an English sentence into a native language,
without the translator knowing the correct context can result in the end
user interpreting incorrect or wrong meaning of the sentence.

Here, we discuss about contexts related to software applications.
Each software application is intended to serve a particular purpose.
Content writers understand the applications and provide the required
instructions, manuals and GUI dialogues. Next phase translators translate
these text to native languages for the end user. In the current scenario,
where translatable strings are generated using computer program into .po
format, translators work on one sentence/string at a time. Many a times,
developers fail to provide correct context for each translatable string. In
some cases, strings can be ambiguous, split up into two conveying partial
meaning, can have application functions based new words etc, without
correct context being provided. Such strings will be translated incorrectly,
conveying the wrong meaning to the end users affecting the usage of
application. Contextualization in the only solution to overcome this
deficiency.

Guidelines for Contextualization 3

NEED OF CONTEXTUALIZATION

Contextualization is the process of providing relevant context for
source strings. The objective is to provide meaningful descriptions of the
source strings for translators to ensure the correctness and quality of the
translations. Thus facilitating good end user experience of the localized
applications.

Contextualization :-
• ensures that the correct meaning of source strings are conveyed to the

translators, thus the quality of translation is not compromised.
• improves the user experience of the localized applications.
• increase the popularity of the localized Fedora desktop.

Contextualization not only help translators, this process extends its
benefits to both users and developers too.

For TRANSLATORS:
 Providing correct (relevant) context/meaning/reference helps the
translators to create good translations ensuring better quality.

For USERS:
 Good quality translations help the user to understand and use an
application making best benefit of it. This aids to the betterment of the
application.

For DEVELOPERS:
 Good translations increase number of users which in turn increases the
number of application users and benefiting the developer's hard work.
Users will be able to provide good feedback on the application enabling
the developer to improve his application.

Guidelines for Contextualization 4

SCENARIOS REQUIRING CONTEXTUALIZATION

• AMBIGUOUS WORDS:

Some of the source strings have ambiguous words whose context needs to be
mentioned.
Line: Here the word Line can be a line of text, a thin continuous mark i.e, a
graphical representation, line number etc. All these different scenarios of word
line can be found in a word processing application like LibreOffice Writer.
Empty Trash: Here word Empty can be a verb or an adjective i.e, whether to
empty the trash or the trash is empty.

This is how the string appears in a translation tool:

This is how the string appears in application UI:

Here Empty is used as a verb.

Guidelines for Contextualization 5

• SPLIT SENTENCES:

Some of the source strings are split into two or more strings which need to be
thought as a single sentence while translating to convey the correct message.
e.g. “Grab after a delay of”
“%s seconds”
Here these two sentences are actually a single sentence appearing in the
application UI whereas in translation editor they are two separate sentences.

This is how the string appears in a translation tool:

This is how the string appears in the application UI:

Guidelines for Contextualization 6

• VARIABLES:

Strings that have variables should have their data type (character, integer, date
time etc) mentioned to convey correct message for meaningful translation.
e.g. “Screenshot from %s - %d.png”

This is how the string appears in a translation tool:

Here %s has a date value and %d has a time value. So, the translation should be
like:

Screenshot from date – time.png

Guidelines for Contextualization 7

• WORD OR PHRASE MEANING:

Sometimes the source string contains some words or phrases whose meaning is
not clear or may be too technical.

e.g. : In the file firewalld, phrases like “Shields Up” and “Shields Down”
don't have a clear meaning.

In Firefox, Caret Browsing doesn't have a clear meaning.

“Load request canceled”: Here meaning of the word Load needs to be given.

Words like maximize, unmaximize and minimize need to have a clear context
as there use cases are different then their actual meaning. UI s having these
words have the following meanings in terms of usage:

Maximize: To make the application window full screen.

Unmaximize: To make the application window small (similar to Restore)

Minimize: To hide the application window.

Guidelines for Contextualization 8

• TRANSLATION GUIDELINES:

• Some strings have keywords, commands, command literals, keyboard
keys, function names, service modes, values which should be retained in
English else it will create functionality and usability issues.

Function call: default:LTR

Commands: subscription-manager, clear, exit etc

Command literals: firstname, surname etc

Keyboard keys: Shift, Enter etc

Service modes: Selinux modes like enforcing, permissive...

Values: TRUE, FALSE, NONE etc.

• In another instance where words shown below can be translated or left
untranslated but consistency need to be maintained:

 [COMMAND] , [PATH] , [FILENAME]

Hence, information is required on the above mentioned scenarios to avoid
confusion.

Guidelines for Contextualization 9

WAYS OF WRITING CONTEXT RELATED MESSAGES

When writing the context related messages to the source strings, one has to study the
application and its usage. Since this text will be inserted in the source code of the
application, text gets multiplied with the number of languages to which it will get
translated. This leads to considerable increase in size of the application. Hence one
should write precise yet meaningful context messages. Providing proper reference
urls and examples is also a good idea.

Standard Context For Common Phrases used in KDE

Below is a chart showing some common words and phrases in English and the
context that must be used with them to ensure proper translation of them in other
languages.

Standard Contexts

Phrase Context i18nc Call

Busy Referring to a person i18nc("A person is busy", "Busy")

Busy Referring to a thing i18nc("A thing is busy", "Busy")

Color
Color mode, as
opposed to
Grayscale

i18nc("Not Grayscale", "Color")

Creator Referring to a person i18nc("A person who creates", "Creator")

Creator Referring to software i18nc("Software", "Creator")

Display
Referring to
hardware

i18nc("Hardware display", "Display")

Editor Referring to a person i18nc("A person who edits", "Editor")

Editor Referring to software i18nc("Software", "Editor")

Line Referring to drawing i18nc("Draw a line", "Line")

Line Referring to text i18nc("Line of text", "Line")

Name
Referring to a name
of thing

i18nc("A thing's name", "Name")

Name
Referring to first
name and last name
of person

i18nc("Person's first and last name",
"Name")

New Create something i18nc("Action", "New")

New Status i18nc("New mail message", "New")

No Answer to a question i18nc("Answer to a question", "No")

No
Availability of a
thing

i18nc("Availability", "No")

(Re)load (Re)load a i18nc("(Re)load a document", "(Re)load")

Guidelines for Contextualization 10

document, medium
etc.

(Re)load
(Re)start a program,
daemon etc.

i18nc("(Re)start a program", "(Re)load")

Title Referring to a person i18nc("A person's title", "Title")

Title Referring to a thing i18nc("A thing's title", "Title")

Trash
Referring to the
action of emptying

i18nc("The trash is not empty. Empty it",
"Empty")

Trash
Referring to the state
of being empty

i18nc("The trash is empty. This is not an
action, but a state", "Empty")

Volume Referring to sound i18nc("Sound volume", "Volume")

Volume
Referring to a
filesystem

i18nc("Filesystem volume", "Volume")

Volume Referring to books i18nc("Book volume", "Volume")

Yes Answer to a question i18nc("Answer to a question", "Yes")

Yes
Availability of a
thing

i18nc("Availability", "Yes")

Guidelines for Contextualization 11

IMPLEMENTING CONTEXT IN SOURCE CODE:

• C/C++ Files:

This will automatically turn into this in the pot and po files:

• Qt Files:

This will automatically turn into this in the pot and po files:

Guidelines for Contextualization 12

/* Translators: this refers to an unknown language code
* (one which isn't in our built-in list).
*/
name = g_strdup_printf (C_("language", "Unknown (%s)"), code);

#. Translators: this refers to an unknown language code
#. * (one which isn't in our built-in list).
#.
#: ../plugins/spell/gedit-spell-checker-language.c:393
#, c-format
msgctxt "language"
msgid "Unknown (%s)"
msgstr ""

//: This name refers to a host name.
 hostNameLabel->setText(tr("Name:"));

 /*: This text refers to a C++ code example. */
 QString example = tr("Example");

#. This name refers to a host name.
 msgid "Name"
 msgstr ""
#. This text refers to a C++ code example.
 msgid "Example"
 msgstr ""

• VALA Files:

This will automatically turn into this in the pot and po files:

• PYTHON Files:

This will automatically turn into this in the pot and po files:

• JavaScript Files:

Guidelines for Contextualization 13

// Translators: The %s will be replaced with the name of the VM
toolbar.title = _("%s - Properties").printf (App.app.current_item.name);

#. Translators: The %s will be replaced with the name of the VM
#: ../src/properties.vala:19
#, c-format
msgid "%s - Properties"
msgstr ""

#. TRANSLATORS: 'r' to refresh
#: pyanaconda/ui/tui/simpleline/base.py:451
msgctxt "TUI|Spoke Navigation"
msgid "r"
msgstr ""

global refresh command
TRANSLATORS: 'r' to refresh
if self._screens and (key == C_('TUI|Spoke Navigation', 'r')):

self._do_redraw()
return True

// Translators: "Title" is the label next to the document title
 // in the properties dialog
 this._title = new Gtk.Label({ label: C_("Document Title",
"Title"),
 halign: Gtk.Align.END });
 this._title.get_style_context ().add_class('dim-label');
 grid.add(this._title);

This will automatically turn into this in the pot and po files:

• XML Files:

 This will automatically turn into this in the pot and po files:

In Mozilla Firefox, context or translators comment are not added in the
source code, they are directly given in the .dtd or .properties.

Guidelines for Contextualization 14

<!-- LOCALIZATION NOTE (pinAppTab.label, unpinAppTab.label):
"Pin" is being
used as a metaphor for expressing the fact that these tabs are
"pinned" to the
left edge of the tabstrip. Really we just want the string to express the
idea
that this is a lightweight and reversible action that keeps your tab
where you
can reach it easily. -->
<!ENTITY pinAppTab.label "Pin as App Tab">
<!ENTITY pinAppTab.accesskey "P">
<!ENTITY unpinAppTab.label "Unpin Tab">
<!ENTITY unpinAppTab.accesskey "b">

#. Translators: "Title" is the label next to the document title
#. in the properties dialog
#: ../src/properties.js:82
msgctxt "Document Title"
msgid "Title"
msgstr ""

<short><!-- Translators: Here “Preload” is a verb -->Preload
engines</short>

#. Translators: Here “Preload” is a verb
#: ../data/ibus.schemas.in.h:2
msgid "Preload engines"
msgstr ""

So, as shown in the above examples, relevant context should be added to
the source code according to the programming language used for the
application.

e.g. In Gnome applications, where mostly C/C++ or Vala programming
languages are used, contexts for the source strings are to be provided in the
following way:

• For C/C++ files:

The translators' comment should be written inside /* */ like:

/*Translators: Here, 'Empty' is a verb*/
g_printf (_("Empty Trash"));

Here, 'Empty Trash' is the source string in the .po file.

• For Vala Files:

The translators' comment should be written after // like:

// Translators: The %s will be replaced with the name of the VM
toolbar.title = _("%s - Properties").printf (App.app.current_item.name);

Here, '%s - Properties' is the source string in the .po file.

In Fedora applications, where mostly Python programming language is
used, contexts for the source strings are to be provided in the following
way:

• For Python Files:

The translators' comment should be written after # like:
global refresh command
TRANSLATORS: 'r' to refresh
if self._screens and (key == C_('TUI|Spoke Navigation', 'r')):

self._do_redraw()
return True

Here, 'r' is the source string in the .po file.

Guidelines for Contextualization 15

These days most of the devices are supporting locales other than en. A
statistics says that 56.2 percent of consumers say that the ability to obtain
information in their own language is more important than price. –
(Common Sense Advisory, Can't Read, Won't Buy: Why Language
Matters on Global Websites, 2006). This tells us the importance of
localization of software applications. Providing proper context information
in translatable files will benefit both the translators as well as the end user.
This is still more important in the FOSS community to get more translators
as the localization is done voluntarily. At the end a local language will be
the winner.

REFERENCES:

• Context in Technical Translation Concept and Guidelines –
Rajesh Ranjan

http://svn.fedorahosted.org/svn/fuel/qa/fuel-context-in-technical-
translation-concept-and-guidelines.pdf

• Development Tutorials Localization i18n - KDE TechBase

http://techbase.kde.org/Development/Tutorials/Localization/i18n

Guidelines for Contextualization 16

http://svn.fedorahosted.org/svn/fuel/qa/fuel-context-in-technical-
http://techbase.kde.org/Development/Tutorials/Localization/i18n
http://svn.fedorahosted.org/svn/fuel/qa/fuel-context-in-technical-translation-concept-and-guidelines.pdf

	Standard Context For Common Phrases used in KDE

