
Package Management in LINUX

System Administration
Teaching Professor: Pilar Manzano García

Erasmus Student: Isaakidis Marios
DNI Number: AE196428

Spring Semester 2011

UNIVERSIDAD POLITÈCNICA DE MADRID

Package Management in LINUX – Isaakidis Marios 1

Installing software in LINUX

It's true that a computer's most important element nowadays is software.
The LINUX operating systems are well known for the diversity and adjustability
they offer in this field. Nevertheless, installing new software might be frustrating
in the beginning, but soon the user will realize the unlimited options he has in his
hands.

Unlike Windows' setup.exe and Mac's .sit files which provide only the option
of following basic steps through a series of dialogs, in LINUX you can choose
either to compile the source code by yourself, or use precompiled binaries known
as software packages, to upgrade your software list. The first way is really
useful, as the administrator can totally configure from the “core” the software to
be installed, though sometimes might be a long and demanding task. The second
option, software packages, considered by many as LINUX's greatest innovation,
can help the junior user to automate and secure that procedure of software
setup, upgrade or even uninstallation. This project is focused on presenting briefly
LINUX software packages and their administration fundamentals.

Installing from Source Code

Software for LINUX systems in general is open source, meaning that it's
creators publish the code freely in websites like SourceForge.net, allowing you to
study, contribute on it and alter it under the GNU General Public License
(currently version 3.0) or similar. For this example, we will use the source code of
Audacity, a multi-track audio editor which supports several formats and
interesting features. Usually, you can download the source code in GNU tarball
format with the extension .tar.gz (or .tar.bz2 if bzip2 compression is used).

Tarball files, though it's not recommended and should be done strictly in root
directory, can also be used for installing by the command:

$ tar xvzf [tar file]
x = extract
v = verbose

z = zip. If bzip2 compression is used then replace with j
f = file

The files of archive will be extracted in the respective FHS directories.

Package Management in LINUX – Isaakidis Marios 2

The following procedure is considered obsolete and is now used when there
are no available binary packages, when there is incompatibility with libraries, or
when we want to adjust the program to our needs (adding fixes, removing
unneeded features, enabling compile-time options for better performance etc.).

It is interesting to mention that Gentoo distribution employs a source-based
package system, Portage, which automates the next steps and gives you more or
less the mentioned advantages.

Audacity in Windows XP environment

First step, decompress the .tar file with the above command, read the
Documentation and accept the License. In the main directory of the source code
you will find the file README.txt, which contains programmers' notifications and
usually Install instructions.

Now it's time to parse first configurations. Most of the times it will be easy
to notice the bash program “configure”, which will examine your computer for it's
characteristics, presence of specific features including dependencies etc.

Following LINUX's simplicity principles, a package should do only one task and
should be able to be used by the others. Dependencies are “requirements that exist
between packages” [www.linuxselfhelp.com].

A wise thing to do if you are planning to modify some features, is to
execute $./configure --help. This command will give you information about the
command-time configurations you can use.

http://www.linuxselfhelp.com/

Package Management in LINUX – Isaakidis Marios 3

If there are missing libraries, you will be notified and you can download them from
internet. Debian system users can install essentials for building from source code,
via executing the command:

$ sudo apt-get install build-essential

When configure has finished, you will notice some files have been created,
including Makefile, which have stored your preferences. You can now proceed by
actually compiling the code, using by default the command $ make. To finish the
installation, execute as superuser $ make install.

Software Packages
“A package is a file containing the files necessary to implement a set of

related commands or features”; in this case “the executable files, libraries, and
documentation associated with a particular suite of program or set of related
programs” [www.debian.org]. “Packages also contain metadata, such as the
software's name, description of its purpose, version number, vendor, checksum,
and a list of dependencies necessary for the software to run properly. Upon
installation, metadata is stored in a local package database. Operating systems
based on LINUX and other Unix-like systems typically consist of hundreds or even
thousands of distinct software packages; in the former case, a package
management system is a convenience, in the latter case it becomes essential”
[www.wikipedia.org]. It is the most common and easiest way to share software
as automates and secures the management of programs in LINUX systems.

http://www.wikipedia.org/
http://www.debian.org/

Package Management in LINUX – Isaakidis Marios 4

These packages are administrated by package managers, a collection of
software tools included by default on all LINUX distributions. The two dominants
on this field are the Red Hat Package Manager (RPM) and the Debian GNU/LINUX
Package Manager.

Logos of Red Hat and Debian LINUX distributions

Among other things, Package Management Systems (PMS) offer many benefits:
• Provide tools for installing, updating, removing and managing the software

on your system.
• Allow you to install new or upgraded software directly across a network.
• Tell you what software package a particular file belongs to or what files a

package contains.
• Maintain a database of packages on the system and their status, so that

you can determine what packages or versions are installed on your
system.

• Provide dependency checking, so that you don't mess up your system with
incompatible software.

• Provide GPG, PGP, MD5, or other signature verification tools.
• Provide tools for building packages.

[Robbins A., 2005 p. 468]

Building an RPM package

The Red Hat Package Manager (RPM) is the most popular cross-platform
package manager, originally developed by Red Hat but now widely adopted by
several big distributions like SUSE CentOS and Mandriva

An RPM package has the form package-version-release.architecture.rpm
audacity-1.2.3-11.x86_64.rpm for example is such a file.

Package Management in LINUX – Isaakidis Marios 5

An RPM package is consisted of three main parts:
• the header contains all information about the package
• the signature used to validate the source of package
• the archive composed by the actual files needed for the installation

If you are planning to create an RPM package, one of the requirements is to
create a spec file. This file “contains all the information required to build a
package, including a description of the software, instructions telling the rpmbuild
command how to build the package, and a list of the filed included and where
they get installed.” [Siever E., 2009 p. 552]

To begin with, we have to install all needed tools for packaging, by
executing the commands in an RPM-supporting PMS:

$ yum groupinstall “Development Tools”
$ yum install rpmdevtools

yum is a meta-packager that gives you the ability to easily install a package (that
might not exist in your hard drive) and it's dependencies through the command

$ yum install [name of package]
It also supports commands like update, remove and search for easier

administration of rpm packages.

Now we should create a user for building the packages under his directory.
Never try to create packages under root user, so if something goes wrong your
computer will be invulnerable. You can execute as superuser

$ useradd [user name] and then to change his password you need to run
$ passwd [user's password]

Log into this user by $ su [user name] and execute in your home directory
$ rpmdev-setuptree . This script will create a ~/rpmbuild directory which we
will use for creating the packages. Copy the original source .tar file in
~/rpmbuild/SOURCES folder. Be sure to remove any external libraries included,
they should be packaged separately and added as dependencies. Also verify that
you are allowed to package this software via reading it's License (OSS licences
allow you to do that, some of them under special premises).

Here comes the most interesting part, creating the spec file. Execute
$ rpmdev-newspec [program name] and you can find under ~/rpmbuild/SPEC
directory a template [program name].spec file. At appendix B there is a custom
audacity.spec file, created specially for the project, of audacity's latest stable
version (1.2.6), patched to support MP3 encoding by default. [I had to rename
the compressed source folder from audacity-src-1.2.6 to audacity-1.2.6 in order
to avoid adding more information on the .spec file, as during the rpmbuild
execution there was an “invalid” directory].

Now we can proceed in creating the binary and source RPM packages:
$ rpmbuild -ba [program].spec
$rpmbuild -bs [program].spec

Package Management in LINUX – Isaakidis Marios 6

Since we have resolved all dependency issues, the above commands will
create the packages underneath ~/rpmbuild/RPMS and ~/rpmbuild/SRPMS
respectively. To check them we execute under SPECS directory:

$ rpmlint NAME.spec ../RPMS/*/NAME*.rpm ../SRPMS/NAME*.rpm
The only step remaining is to eliminate the warnings rpmlint returns and

install the binary package to our computer by $ rpm -i [package].rpm

PackageKit, a GUI package manager aiming to unify all the software graphical tools used in different distributions

Management of packages in Debian the APT way

While .rpm packages are considered a standard in software sharing, Debian
was the distribution which revolutionized the way of managing packages in
LINUX. Starting from dpkg and expanding to Ubuntu Software Center, you can
have total control of the more than 25.000 .deb packages you can find on web.

dpkg is the very core of the Debian PMS, like rpm command in Red Hat's
PMS. Through it's calls you can install, remove and provide information about
.deb packages. Because it is low level, it might serve as an administrator's last
chance to rescue Debian system or to fix broken package scripts.

What is of interest though is the Advanced Packaging Tool (APT), “a
front-end for dpkg providing http, ftp and file archive access methods”

Package Management in LINUX – Isaakidis Marios 7

[www.debian.org]. The innovation APT brought to LINUX was the automatic
dependency resolution. While dpkg can work with individual packages, the
command $ apt-get install [name of package] will search in the sources listed
in /etc/apt/sources.list file, download the packages or source code you have
requested and execute all needed actions for the successful installation of the
program.

The sources.list file contains entries in the following format:
deb [server-type] [address] [directories] [areas]

deb-src [server-type] [address] [directories] [areas]
Most archives are FTP or HTTP servers, but you can also insert rsh or SSH server or
even a CD or a directory from your computer. Be sure to execute as root
$ apt-get update after modifying the sources.

Here follow some of the basic commands APT supports. You need to be root
to execute them:

$ apt-get install [program] APT installs the latest version of the
package in all the available sources. In
every following situation, can add the
version you prefer by [package]=[version
number / stable /unstable / testing]

$ apt-get upgrade APT will actually upgrade to the newest
stable versions all packages installed in your
system

$ apt-get build-dep [program] build-dep causes apt-get to install/remove
packages in an attempt to satisfy the build
dependencies for a source package.

$ apt-get source [program] APT will fetch source packages from the
packages you requested. If followed by
--compile it will create a .deb binay package
using dpkg-buildpackage that you can later
install

$ apt-get check check is a diagnostic tool; it updates the
package cache and checks for broken
dependencies.

$ apt-get remove [program] APT removes the packages, though leaving
it's configuration files on system

$ apt-get clean clean clears out the local repository of
retrieved package files

http://www.debian.org/

Package Management in LINUX – Isaakidis Marios 8

APT waiting authorization to install audacity

The Advanced Packaging Tool can automate the installation from source
code, or even upgrade of the whole system, in only one command. Things
become even better, as there are GUI front-ends of APT, like synaptic.

Installing audacity with synaptic

Furthermore, there are tools like Ubuntu's Software Center which offer a
user-friendly environment, categorize applications by their use and allow you to
install a program only by mouse clicks.

Package Management in LINUX – Isaakidis Marios 9

One to rule them all...
Studying the advance in PMS during the last years, you can notice a

tendency to create interfaces more friendly to users, while keeping the same
principles as defined time ago independent for each one. The big fight between
RPM and dpkg for dominance doesn't help users who usually have to search in
internet for optimized packages, missing dependencies or incompatibilities among
libraries, even more when they try to combine packages from both systems. Also,
although LINUX is called the universal OS available for many architectures, most
packages are compiled only for i386 or i686 architectures.

These remarks gave the spark for creation of new PMS, Portage and
Conary. Portage as mentioned before, which follows the Ports system used by
*BSD distributions, downloads the source code from Gentoo's Portage tree and
compiles it using users' CFLAG environment variables.

During Free Open Source Developers' European Meeting 2011, many LINUX
contributors were discussing this topic. The time when there were conflicts
between distributions seem to have passed, as most welcomed the idea of
creating a single unified package management system, something like a “cross-
distro App-Store [...] The power in Linux's package management comes from
three primary things: repository flexibility, dependency management, and
complete file system access” [Damien Radtke]. In my opinion, such an
accomplishment is to be expected in the next versions. But we can be sure for
one thing, that this freedom LINUX offers to users, to totally have control of their
systems and parametrize it according to their needs, will never extinct.

Ubuntu Software Center offering 35707 packages categorized in “Departments”

Package Management in LINUX – Isaakidis Marios 10

References

• Turnbull J., Lieverdink P., Matotek D., Administración de sistemas Linux,
Anaya Multimedia, Madrid 2010

• Krafft, Martin F., The Debian system : concepts and techniques, No
Starch, San Francisco 2005

• Rodríguez de Sepúlveda Maillo, Manual imprescindible de Linux, Anaya
Multimedia, Madrid 2009

• Morrill, Daniel L., Tuning and customizing a Linux system, Berkeley
Apress, 2002

• Anguiano, Eloy, Linux, Pearson Educaciòn, Madrid 2008

• Stanfield, Vicki, Linux System Administration, Sybex, San Francisco
2002

• Roderick W. Smith, Linux administrator street smarts : a real world
guide to Linux certification skills, Wiley, Indianapolis 2007

• Roderisk W. Smith, LPIC-1 Linux Professional Institute Certification –
Study Guide, Wiley, Indianapolis 2009

• Siever E., Figgins S., Love R., Robbins A., Linux in a nutshell – A
Desktop Quick Reference, O'Reilly, USA 2009

• Robbins A., UNIX in a nutshell, O'Reilly, USA 2005

• http://www.linux.com , http://www.debian.org , http://fedoraproject.org ,
http://ianmurdock.com , http://wikipedia.org

http://wikipedia.org/
http://ianmurdock.com/
http://fedoraproject.org/
http://www.debian.org/
http://www.linux.com/

Package Management in LINUX – Isaakidis Marios 11

Appendix: Custom audacity.spec File

Name: audacity
Version: 1.2.6
Release: 1%{?dist}
Summary: Audio editor
Group: Applications/Multimedia
License: GPLv2
URL: http://audacity.sourceforge.net
Source0:
http://sourceforge.net/projects/audacity/files/audacity/1.2.6/audacity-src-
1.2.6.tar.gz

Patch1: audacity-1.3.7-libmp3lame-default.patch

BuildRoot: %{_tmppath}/%{name}-%{version}-%{release}-root-%(%{__id_u} -n)

BuildRequires: desktop-file-utils
BuildRequires: expat-devel
BuildRequires: flac-devel
BuildRequires: gettext
BuildRequires: jack-audio-connection-kit-devel
BuildRequires: ladspa-devel
BuildRequires: libid3tag-devel
BuildRequires: taglib-devel
BuildRequires: libogg-devel
BuildRequires: libsamplerate-devel
BuildRequires: libsndfile-devel
BuildRequires: libvorbis-devel
BuildRequires: soundtouch-devel
BuildRequires: vamp-plugin-sdk-devel
BuildRequires: zip
BuildRequires: zlib-devel
BuildRequires: wxGTK-devel
BuildRequires: libmad-devel

%description
Audacity is a cross-platform multitrack audio editor. It allows you to
record sounds directly or to import files in various formats. It features
a few simple effects, all of the editing features you should need, and
unlimited undo. The GUI was built with wxWidgets and the audio I/O
supports OSS and ALSA under Linux.

%prep
%setup -q

Package Management in LINUX – Isaakidis Marios 12

%build
%configure
make %{?_smp_mflags}

%install
rm -rf %{buildroot}
make install DESTDIR=%{buildroot}

%clean
rm -rf %{buildroot}

%files
%defattr(-,root,root,-)
%doc

%changelog

