
Linux Fundamentals

A Practical Guide to Learning Linux

Matthew West

Linux Fundamentals: A Practical Guide to Learning
Linux
by Matthew West

Published 2005-01-25 19:56:07
Copyright © 2004 The Shuttleworth Foundation

Unless otherwise expressly stated, all original material of whatever nature created by the contributors of the Learn
Linux community, is licensed under the Creative Commons [http://creativecommons.org/] license
Attribution-ShareAlike 2.0 [http://creativecommons.org/licenses/by-sa/2.0/]
[http://creativecommons.org/licenses/by-sa/2.0/].

What follows is a copy of the "human-readable summary" of this document. The Legal Code (full license) may be
read here [http://creativecommons.org/licenses/by-sa/2.0/legalcode/].

You are free:

• to copy, distribute, display, and perform the work
• to make derivative works
• to make commercial use of the work

Under the following conditions:

Attribution. You must give the original author credit.

Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting work only

under a license identical to this one.

• For any reuse or distribution, you must make clear to others the license terms of this work.
• Any of these conditions can be waived if you get permission from the copyright holder.

Your fair use and other rights are in no way affected by the above.

This is a human-readable summary of the Legal Code (the full license)
[http://creativecommons.org/licenses/by-sa/2.0/legalcode/].

http://creativecommons.org/
http://creativecommons.org/licenses/by-sa/2.0/
http://creativecommons.org/licenses/by-sa/2.0/
http://creativecommons.org/licenses/by-sa/2.0/legalcode/
http://creativecommons.org/licenses/by-sa/2.0/legalcode/

Table of Contents
1. Details of requirements for the courses ..1

Machine Requirements ..1
Course Pre-requisites And Outcomes ..2

A theory that works ...2
Pre-requisite knowledge and outcomes ..3

2. Linux Distributions and Certifications ...5
Licensing and availability details for Debian, Red Hat and SuSE5

SUSE Linux ..5
Red Hat ..9
Debian GNU/Linux ...14

On Line Classmates Information and Registration16
Certification ..17

Linux Professional Institute Certification17
SAIR Linux and GNU Certification ..17
Red Hat Certification ...17

3. History and Politics A Business Oriented Background23
Introduction ..23

Open Source and Free Software Licenses23
The History of Open Source Software28
Benefits of the Open Source Development methods31
The Cathedral and the Bazaar ...32
Why is Free Software not used extensively in the Enterprise
environment? ..39

Does Linux meet industry standards i.e. POSIX, IEEE, X/OPEN ?42
Exercises and Quiz ..43
Setup of Linux Emulator for Fundamentals Course44

4. Essentials ..45
What is Linux? ..45
Structure of a Linux Based Operating System.46

Hardware ..46
Kernel ...46
Standard Library of Procedures ..47
Standard Utilities and User Applications47
Lateral thinking with further details on the Operating System
Simone Demblon ...47

Logging into a Linux System ..48
Login ..48
The Password File ...50

The Shell Command Interpreter ..52
Different Shell Command Interpreters53
The Command History within the shell54
Configuring your shell environment ..55

Shell Command Processing ..55
The Shell Environment ..57
Using Shell Commands ..62

Files and Directories ..72
Files under Linux ...72
Inodes ...72
Linux FS Hierarchy ...77
Editing Files under Linux ...79
Working with normal data files ...86
links ...99

File permissions/security .. 101
chmod ... 103
chown and chgrp ... 105
umask ... 105

File Redirection, Named and un-named pipes 106
stdin ... 107
stdout .. 107
stderr .. 108
Appending to a file .. 109
Piping ... 110

Other commands ... 111
A. Linux Professional Institute (LPI) Certification 113

Introduction .. 113
Junior Level Administration (LPIC1) 113
Intermediate Level Administration (LPIC2) 143

B. Linux kernel version 2.6 .. 167
The Wonderful World of Linux .. 167

Index .. 189

vi Linux Fundamentals

List of Figures
4.1. Operating Systems Layers ...46
4.2. Filesytems, Cylinder, Inodes and Superblock Layouts76
4.3. Debian Directory listing ...77
4.4. Empty vi buffer ...81
4.5. Movement keys in vi ...82
4.6. Different ways of getting into Insert Mode, and how that effects the place
where text is inserted. ..84
4.7. stdin, stdout, stderr .. 107
4.8. piping from one process to another ... 110

viii This page intentionally left blank

List of Tables
4.1. /etc/passwd ...51
4.2. File Permissions Table ...75
4.3. File Permissions example 1 .. 102
4.4. File Permissions example 2 .. 102
4.5. File Permissions example 3 .. 102
4.6. Symbolic File Permission switches ... 104
A.1. LPI exam 101: Hardware and Architecture 113
A.2. LPI exam 101: Linux Installation & Package Management 117
A.3. LPI exam 101: GNU & Unix Commands ... 120
A.4. LPI exam 101: Devices, Linux Filesystems, Filesystem Hierarchy
Standard .. 124
A.5. LPI exam 101: The X Window System .. 126
A.6. LPI Exam 102: The kernel .. 128
A.7. LPI Exam 102: Boot, Initialization, Shutdown and Runlevels 130
A.8. LPI Exam 102: Printing .. 131
A.9. LPI Exam 102: Documentation ... 132
A.10. LPI Exam 102: Shells, Scripting, Programming and Compiling 133
A.11. LPI Exam 102: Administrative Tasks ... 134
A.12. LPI Exam 102: Networking Fundamentals 137
A.13. LPI Exam 102: Networking Services ... 139
A.14. LPI Exam 102: Security .. 142
A.15. LPI Exam 201: The Linux Kernel .. 144
A.16. LPI Exam 201: System Startup .. 146
A.17. LPI Exam 201: Filesystem .. 146
A.18. LPI Exam 201: Hardware .. 147
A.19. LPI Exam 201: File and Service Sharing .. 149
A.20. LPI Exam 201: System Maintenance .. 150
A.21. LPI Exam 201: System Customization and Automation 151
A.22. LPI Exam 201: Troubleshooting .. 152
A.23. Exam 202: Networking ... 154
A.24. Exam 202: Mail & news ... 155
A.25. Exam 202: DNS ... 156
A.26. Exam 202: Web Services .. 158
A.27. Exam 202: Network Client Management .. 160
A.28. Exam 202: System Security ... 161
A.29. Exam 202: Network Troubleshooting ... 165

x This page intentionally left blank

Chapter 1. Details of requirements
for the courses

Machine Requirements
You do not need a very poweful Computer to run Linux. If you did a console only
installation (without a GUI windows environment) a Pentium 100 with 32 MB of
memory and 500 MB of hard drive space would be more than enough . Of course the
more recent versions of Linux like Red Hat™ Enterprise 3 and SUSE Linux™ 9
would need a computer with more capabilities than a Pentium 1

Fundamentals
It is possible to run this course on Linux or in Windows - however when working in
Windows you will have to install a Linux emulator. Matthew West created a Debian
GNU/Linux image you can use with Bochs, an Open Source Emulator. We suggest
you use this image and Bochs, since it also includes the sample files that Matthew
West uses as examples and Exercises in the Fundamentlas course.

What this does is to create a virtual enviroment, that runs inside your current
Operating System, which runs Debian GNU/Linux. Download and installation
instructions can be found the section called “Setup of Linux Emulator for
Fundamentals Course” [44] here.

Because this emulated (virtual) machine needs to use the resources of the installed
Operating System you need a faster computer to run it successfully. We recommend
a Pentium 2 500 Mhz computer with 32 MB memory. If you already have Linux
installed you do not need to use the simulator.

System Administration
For the System Administration course you need only one machine. The System
Administration course begins by explaining how to install Debian. Run this course
after you have completed and are familiar with the material covered in the
Fundamentals course.

Networking
For the Networking courses, you would need to have two machines with Linux
installed on them. Both machines should have a Network card installed. If you are
using a machine that is already connected to a Local Area Network then you do not

need a second machine.

Shell Scripting and Internals courses
You need to have a Linux distribution installed to take part in these courses

Course Pre-requisites And Outcomes

A theory that works
In the technical world of computers today it is no longer really enough to just know
or specialise in one area of technology. With the emphasis being on networking, you
will need to know something of everything to really get by. (e.g. operating systems,
routers and other networking equipment, system and network administration, system
and network design, latest technology trends etcetera.)

You will also need knowledge of the business structure in your company. Become a
technical person able or capable of enhancing the business of the company or
companies that you work for - almost operating as a business yourself
(self-sustaining and self-enhancing).

Some examples would be:

• Regular operating system maintenance will ensure good solid and consistent
performance - this could save the business a lot of money.

• Another example would be that if you know the Open Source and Free Software
products available you could advise your company to go with that solution rather
than a propriety solution and this could go a long way to ensuring that the
business saves money.

• Think laterally and carefully when supporting and Operating System like Linux
or Unix, being so powerful means that there is more to it than a simple stream of
instructions.

• Become aware of what is happening around you in the computer industry and in
business and become a real asset.

A note aside:- “Whilst working as a Unix technician, a new "client" phoned me one
day and asked me to install another disk drive on the Unix server for them as their
first hard drive was full. They had been running this server for 4 years and I asked
them to wait until I arrived before purchasing another disk but I was too late they
had ordered one already. When I arrived I cleaned up the primary hard disk drive
from 100% full to 40% full just by doing thorough house-keeping (could have been
handled with a Shell Script running automatically each week/month), tidying up the

2 Details of requirements for the courses

log files, temporary directories, superfluous software versions etcetera.” Simone
Demblon

Once you have learnt one operating system in the way that we have structured this
course, it is much easier to pick up other knowledge on hardware / operating
systems, system configuration and even development.

As it would be almost impossible to learn everything about all technology available,
cultivate a technical way of thinking laterally, it will be a decided advantage to you.

Pre-requisite knowledge and outcomes
The text below is a mere guideline to equivalent knowledge, as you know if you
have a talent for working with computers OR if you are an extremely hard-worker
who is prepared to play with the operating system until you are sure of yourself, then
you are likely to not need to follow these guidelines and you will exceed the
qualification levels that are suggested here.

Therefore when I say below that your knowledge would be equivalent to a System
Administrator, what I am really saying is that although you will have an extensive
knowledge of Linux (we have structured the courses to ensure that there are
sufficient labs and Exercises), the additional knowledge - the knowledge of specific
company set-ups or specific pieces of hardware - will still have to be gained by your
experience.

Now let's look at each course or course range and discuss the relevant issues:

1. In order to successfully complete the Fundamentals course you will need to
have knowledge of PC Computers (operating systems and hardware).

After completion on the Fundamentals course (approximately 18 hours of
study), you would have a basic grounding of the Linux Operating System.

Please note however that although an introductory course to Linux it is not an
introduction to computers or operating systems. We assume that you have some
technical knowledge already.

In this course, some internal operations of the operating system are covered
simply, and this is in order to ensure that you are able to think a problem
through laterally. This will also assist if wishing to complete the range all the
way through to the Internals course, by giving you a grounding in simple terms
to build on throughout the other courses.

2. In order to successfully complete the System Administration course you would
need enough knowledge to install an operating system.

Pre-requisite knowledge and
outcomes

3

After completion of the Fundamentals and System Administration courses (18
+ 30 hours), you would have the equivalent knowledge of a Junior
Administrator in Linux. You will have enough knowledge and experience
(through intensive labs) to assist a fully qualified System Administrator in a
commercial business situation. (RHCT)

At this stage all you will lack is further experience to enable you to perform the
function of System Administrator.

3. After further completing the Network Administrators course (30 hours), and
this would include all associated Exercises, labs and simulated problem labs,
you would be able to work as a Junior Network Administrator.

4. After completing the Elective course subjects, affiliated to the Networking
course, (18 hours) you would be qualified to do System and Network
Administration including monitoring and maintaining your network. (RHCE)

5. Shell Scripting (20 hours) is a course that will clarify the power of Linux for
you and will also excite you as pieces of the "operating system puzzle" fall into
pace at an alarming rate. This is a stunning course and no matter what you
intend to do with your Linux knowledge this course is a must.Ensure that you
have completed the following courses or that you have equivalent knowledge
prior to attempting this course: Fundamentals, System Administration and
Networking Introduction.

6. Internals^-1 is a technical course written to enable a System Administrator to
become a visionary systems engineer able to attend a full internals course if so
inclined. A cautionary note would be that although we have kept it as
generically inclined as possible you may have to check up the variances with
the Linux or Unix kernel that you are working with.

As we have said from the beginning, support of such an operating system is
going to take a fair amount of lateral thinking, and as not all of us are interested
in the nitty-gritty details of how an operating system was written (see reference
material used if you are interested), so internals^-1 will give you the workings
in a more simple technical form.

4 Details of requirements for the courses

1 Novell.com [http://www.novell.com/news/press/archive/2003/11/pr03069.html]
2SUSE is a registered trademark of SUSE Linux™
3 http://www.suse.com/us/private/products/suse_Linux/

Chapter 2. Linux Distributions and
Certifications
Licensing and availability details for Debian, Red Hat and SuSE

There are literally hundreds of Linux Distributions available. Size-wise they extend
from versions that fit onto one 3.5 inch disk to those that are a few gigabytes big.

Although there are differences from one version of this operating system to another,
they all use the Linux Kernel (albeit different versions of the kernel

We will discuss three of the Linux distributions that are most widely used, namely:
SuSE, Red Hat, and Debian

SUSE Linux™
Novell announced1 on November the 4th 2003, that they have made an agreement to
acquire SUSE Linux™ 2, this purchase is subject to regulatory approval, but is
expected to be allowed and finalized by the first quarter of 2004.

Home Users

This is how SUSE™ describes SUSE Linux 9.0, which is the family of products
aimed at the home user:3

“ Migrating from Windows has never been easier: SUSE Linux 9.0 is secure and
stable. In addition to a powerful operating system, SUSE Linux 9.0 delivers all the
applications you need for Internet, Office, Multimedia, and Home networking. Its
installation routine is now almost fully automated, so you'll be up and running with
little effort. And, of course, you are assured all the advantages of using Open Source
software. ”

System Requirements for SUSE Linux 9.0 ™

• Processor

• Intel: Celeron, Pentium to Pentium 4, Xeon

• AMD: K6/II/III, Duron™, Athlon™, Athlon™ XP/MP, Athlon 64™

http://www.novell.com/news/press/archive/2003/11/pr03069.html
http://www.suse.com/us/private/products/suse_Linux/

4A list of FTP mirror sites can be found here.
[http://www.suse.com/us/private/download/ftp/int_mirrors.html] From here you would be able to
download the files you need to install SUSE Linux 9.0™

• IBM

• 286, 386, 486 and Cyrix processors are not supported

• Main Memory

• At least 64 MB are required for the installation with YaST2 in graphical
mode; 128 MB recommended

• Hard disk

• 400 MB to more than 3 GB (Personal Edition) or 6 GB (Professional Edition)
for the installation of all packages; 2 GB or more recommended

• LBA48 hard disks are supported

SUSE Linux™ 9.0 can be downloaded via FTP for free. You can choose to
download the complete installation directory, a CD image, from which you can
create a bootable CD that will download and install SUSE from the FTP server. It is
not possible to create the installation CD's for SUSE™ from the directories on the
FTP server. You can also download a demonstration version of SUSE™ that runs
from a bootable CD4

Enterprise Users

SUSE™ currently has three products that businesses are suggested to use, these are
SUSE Linux Standard Sever 8™, SUSE Linux Enterprise Server 8™ and SUSE
Linux Openexchange Server 4.1™

SUSE Linux Standard Server 8™:

This is how SUSE describes SUSE Linux Standard Server 8™

“ With its comprehensive graphical administration, SUSE Linux Standard Server
was designed for small organizations and departments that want to implement their
Internet access as well as e-mail, print, and file services in a reliable, secure way.
Standard Server is available for 32-bit processors (x86) from AMD and Intel and
supports up to two CPUs” 5

6 Linux Distributions and Certifications

http://www.suse.com/us/private/download/ftp/int_mirrors.html

5From: http://www.suse.com/us/business/products/server/

System Requirements for SuSE Linux Standard
Server 8™:

• Reccomended CPU: 700 Mhz

• Minmum RAM: 256 MB

• Hard Disk Space Required for Installation: 1 GB

Features of SuSE Linux Standard Server 8™:

• File and print services for Linux and Windows™

• Primary Domain Controller (PDC) for Windows™

• Central user administration with directory service (LDAP)

• E-mail server (IMAP) for all e-mail clients including:

• Definition of the mailbox quota

• SPAM filter

• Dial on demand

• Fetching mail from other providers

• Internet gateway server including web cache, web content filter, and firewall

• Automatic assignment of IP addresses via DHCP server

• Administration of host names with Dynamic Name Service (DNS)

• Secure access for clients, i.e. for external staff via Virtual Private Network
(VPN)

• Application server

SuSE Linux Enterprise Server 8™

This is how SUSE describes SUSE Linux Enterprise Server 8™

Features of SuSE Linux
Standard Server 8™:

7

http://www.suse.com/us/business/products/server/

6From: http://www.suse.com/us/business/products/server/
7From:http://www.suse.com/us/business/products/openexchange/

“ SUSE Linux Enterprise Server 8 is a leading server operating system for
professional deployment in heterogeneous IT environment of all sizes and sectors. It
is available for all relevant hardware platforms, ranging from AMD/Intel 32-bit and
64-bit processors to the entire IBM eServer series including mainframes - one single
server operating system with a uniform code basis!” 6

System Requirements for SUSE Linux Enterprise
Server 8™:

• Recommended CPU: 800 MHz

• Minimum RAM: 256 MB

• Hard Disk Space required for installation: 1.2 GB

For a full list of SuSE Linux Enterprise Server 8™ Features, visit this
[http://www.SuSE.com/en/business/products/server/sles/features.html] page

A comparison of SUSE Linux Standard Server 8™ and SUSE Linux Enterprise
Server 8™ can be found here.
[http://www.suse.com/en/business/products/server/which_version/index.html]

SUSE Linux Openexchange Server 4.1™

This is how SUSE describes SUSE Linux Openexchange Server 4.1™

“ SUSE Linux Openexchange Server 4.1 is the trend-setting groupware and
communication solution that helps your company to progress - with superior
technical features, far-reaching hardware independence, smooth migration, and a
wide range of supported clients including Outlook clients from Outlook 98 and
various web browsers.For All Requirements”

“On the basis of standardized protocols and Open Source components, SUSE Linux
Openexchange Server offers everything modern enterprises and organizations need
for communication: e-mail server, web server, groupware, collaboration, and
messaging.” 7

System Requirements for SUSE Linux
Openexchange Server 4.1™

• CPU(s): AMD Athlon™ /Duron™, Intel Pentium III/4 or compatible AMD K6

8 Linux Distributions and Certifications

http://www.suse.com/us/business/products/server/
http://www.SuSE.com/en/business/products/server/sles/features.html
http://www.suse.com/en/business/products/server/which_version/index.html
http://www.suse.com/us/business/products/openexchange/

8From:http://fedora.redhat.com/

is not supported!

• RAM: 256 MB

• Hard disk space: 9 GB

Red Hat
Red Hat Linux is probably the most well known Linux distribution. The first version
of Red hat was released in October 1994.

Its success can be attributed to the commitment to support and the development of
the RHCE certification. For this reason, many of the corporate companies choosing
to use Open Source Software have selected Red Hat Products. They knew that with
Red Hat they would be able to have reliable updates to the products and that there
was a pool of trained Red Hat Support Engineers.

Red Hat for Home Users: Fedora

Late in 2003 Red Hat announced that they would stop supporting Red hat Linux 9
and instead release two new product lines, aimed at very different markets.

Up until that time Red Hat Linux 9 and the earlier versions, were used in the
corporate environment and by home users.

The version now meant for home users is called "the Fedora Project"

This is how Red Hat describes the Fedora Project: "The Fedora Project is a
Red-Hat-sponsored and community-supported open source project. It is also a
proving ground for new technology that may eventually make its way into Red Hat
products. It is not a supported product of Red Hat, Inc." 8

A more open development process is used for Fedora, than is for Red Hat Enterprise
Linux. The Red Hat Developers are still taking part in the development of Fedora
but more community driven development is encouraged.

Fedora License

In my understanding, a user may make and distribute unmodified copies of Fedora's
source code and binary code. If the product is modified you may only redistribute
these files if all images that contain the Fedora trademark is changed.

Fedora's binary and source files may be downloaded, for free, via FTP.

Please see this [http://fedora.redhat.com/download/] page, for exact instructions on

Red Hat 9

http://fedora.redhat.com/
http://fedora.redhat.com/download/

how to download Fedora's installation files.

Fedora System Requirements

• CPU: Note: The following CPU specifications are stated in terms of Intel
processors. Other processors (notably, offerings from AMD, Cyrix, and VIA)
that are compatible with and equivalent to the following Intel processors may
also be used with Fedora Core.

• Pentium-class Note: Fedora Core 1 is optimised for Pentium PRO (and later)
CPUs, but also supports Pentium-class CPUs. This approach has been taken
because Pentium-class optimisations actually result in reduced performance
for non-Pentium-class processors.

• Recommended for text-mode: 200 MHz Pentium-class or better

• Recommended for graphical: 400 MHz Pentium II or better

• Hard Disk Space (NOTE: Additional space will be required for user data):

• Custom Installation (Minimal): 520MB

• Server: 870MB

• Personal Desktop: 1.9GB

• Workstation: 2.4GB

• Custom Installation (Everything): 5.3GB

• Memory:

• Minimum for text-mode: 64MB

• Minimum for graphical: 192MB

• Recommended for graphical: 256MB

Red Hat Enterprise Linux

Red Hat has four products that are aimed for use in the corporate environment:

10 Linux Distributions and Certifications

Red Hat Enterprise Linux ws

Designed for desktop/client systems, therefore it does not include the server
applications found in the Red Hat Enterprise Linux ES or AS. (see below).

Red Hat Enterprise Linux ws capabilities and System Requirements

A Test Paragraph to see if it fixes the issue

• Capabilities:

• Mail

• Document Processing

• Browsing

• Instant Messaging

• Supported hardware:

• Intel X86

• Intel Itanium

• AMD

• AMD64

Red Hat Enterprise Linux ES

Designed for small/midrange servers. Has the same capabilities as Red Hat
Enterprise Linux AS, but its hardware support is less extensive. It supports x-86
based systems, with up to 2 CPU's and 8 GB of memory.

It is ideally suited for network, file, print, mail, Web, and custom or packaged
business applications.

• Capabilities:

11

9See this [http://www.redhat.com/software/rhel/as/] page for full specifications for Red Hat enterprise
Linux AS

• Mail

• File (SMB/NFS)

• Print

• Accelerated Web (tux)

• Advanced Firewall (arptables)

• Extended Remote Shell Access/Mgmt

• DHCP

• DNS Nameserver

• Network Authentication (Kerberos)

• News

• Backup

• Dump Server (Netdump)

• Directory Server (LDAP)

• Remote Boot/Image Server

• SSL

• Supported Hardware:

• x86 architectures, up to 2 CPU's

Red Hat Enterprise Linux AS

Designed for high-end and mission-critical systems. This is Red Hat's top of the
range distribution and is certified on systems provided by Dell, HP, IBM, and Sun. 9

It supports the largest commodity-architecture servers with up to 16 CPUs and 64GB
of main memory and is available with the highest levels of support.

12 Linux Distributions and Certifications

http://www.redhat.com/software/rhel/as/

Red Hat Enterprise Linux AS Capabilities and Supported Hardware

• Capabilities:

• Mail

• File (SMB/NFS)

• Print

• Accelerated Web (tux)

• Advanced Firewall (arptables)

• Extended Remote Shell Access/Mgmt

• DHCP

• DNS Nameserver

• Network Authentication (Kerberos)

• News

• Backup

• Dump Server (Netdump)

• Directory Server (LDAP)

• Remote Boot/Image Server

• SSL

• Supported Hardware:

• Intel X86

• Intel Itanium

• AMD AMD64

• IBM zSeries

• IBM iSeries

13

• IBM pSeries

• IBM S/390

Red Hat Professional Workstation

Enterprise Linux for use in the home. Supports up x86 hardware, with up to 2 CPU's.
Meaning that other than Fedora, this distribution does have official support from Red
Hat, this includes technical support as well as security updates.

Red Hat Professional Workstation capabilities and Supported Hardware

• Capabilities:

• Bluecurve, Ximian Evolution, OpenOffice.org, Mozilla

• Samba, NFS, CUPS

• GCC3.2

• Supported Hardware:

• x86 architectures

Red Hat Enterprise Family Licensing

As with the Fedora Project, you are allowed to make and distribute unmodified
copies of the binary and source code. If you want to distribute modified copies of the
software or source code, you need to modify those files which contain the trademark
images of Red Hat.

The licenses may vary depending on the country and product, to view the specific
license for the product you are interested in, visit this
[http://www.redhat.com/licenses/] page.

Debian GNU/Linux
Debian GNU/Linux (to use the correct term, Debian used for short) is a completely

14 Linux Distributions and Certifications

http://www.redhat.com/licenses/

free operating system, by this I mean that it contains no software that is released
under a proprietary license. Some other Linux distributions contain code that is not
free software. It currently uses the Linux kernel, but there are plans to use the GNU
kernel in future releases. The latest stable release is 3.0r.1

Debian can be downloaded via FTP or HTTP from this
[http://www.debian.org/distrib/cd] page

Or purchased from vendors, see this [http://www.debian.org/CD/vendors/] page

There are three versions of Debian that are available: stable, testing and unstable.
This describes the amount of development that has been done on the particular
version, and what environment it is suited to. You would not want to run your
company's servers with the unstable version of Debian!

• Stable: current version is 3.0r.2, codenamed 'Woody'.

• Debian suggests that end users use this version, Debian's security team
supports it. Released in July 2002. Latest update to this version done on
November 21st, 2003

• Testing: Current version is codenamed 'Sarge'.

• Contains packages (applications) that have not yet been released in the Stable
version, but which are planned to be released in the Stable version in the
future. It has more recent versions of the software than Woody, but has no
support from the Debian security team.

• Unstable: Codenamed 'Sid'.

• This version of Debian is the one where new packages are actively being
developed, generally this is only used by developers working on the
packages for Sid.

• Hardware Supported by Debian:

• Alpha ARM

15

http://www.debian.org/distrib/cd
http://www.debian.org/CD/vendors/

• HP PA-RISC

• Intel x86

• Intel IA-64

• MIPS

• Motorola 680x0

• MIPS (DEC)

• PowerPC

• IBM S/390

• SPARC

Debian comes with more than 8700 packages, most of which are released under GPL
licenses (or licenses that can be compared to the GPL). To view the list of packages
that are available, visit this [http://www.debian.org/distrib/packages] page.

The installation manuals for the different distributions and hardware architectures
can be found on this [http://www.debian.org/releases/stable/installmanual] page. The
respective system requirements are found in the installation manuals.

When doing a minimal Debian installation, you need very little system resources.
For example on the Intel x86 architecture you need 12 MB of memory and 250 MB
hard drive space to install a console-based system. To install a system that includes
the X Windows System, you need at least 400MB hard drive space.

On Line Classmates Information and Registration

Apart from the normal HTML version of the manual, we also use Moodle, a Open
Source Package . By using the moodle version of the manual, the student not only
has access to the material but also would have easy access to fellow students who are
also taking part in the courses. Some of the features of Moodle is its forums which
are dedicated to specific parts of the course as well as the chat facilities. This allows
the student to communicate more efficiently with fellow students as well as the
maintainers and lecturers of the courses.

Moodle was developed by Martin Dougiamas, visit www.moodle.org
[http://www.moodle.org] for more information.

The Moodle implementation of this manual can be found at
http://learnlinux.tsf.org.za/moodle/

16 Linux Distributions and Certifications

http://www.debian.org/distrib/packages
http://www.debian.org/releases/stable/installmanual
http://www.moodle.org
http://learnlinux.tsf.org.za/moodle/

10 http://www.redhat.com/training/

Certification
Linux Professional Institute Certification

The Linux Professional Institute currently has two levels of certification, Junior
Level Administration (LPIC1) and Intermediate Level Administration (LPIC2). At
the time of writing the Senior Level Administration (LPIC3) course was still being
developed.

With the permission of the LPI, we have created a detailed list of the skills you need
to have to gain the different levels of certification. We have included this in the first
appendix of this course Appendix A [113]

SAIR Linux and GNU Certification
We intended to cover the SAIR Linux GNU certification as well, but it seems as if it
no longer exists. From their home page http://www.Linuxcertification.org/ it seems
that this certification has been taken over by Thomson Learning corporate and
professional training operations. We have made repeated attempts at contacting the
new administrators of this certification, with no response. SAIR-GNU offered three
levels of certification: Administrator (LCA), Engineer (LCE) and Master Engineer
(MLCE).

Red Hat Certification
One of the reasons Red Hat has been so widely accepted in the Enterprise
environment, I feel, is becasue it has created (and updated) its own certification for
its products. People respect the RHCE certification, because it is not easy to attain.
Unlike other certifications, the RHCE and RHCT exams are done on live test
systems, that simulate tasks that System Administrators should be capable of doing.

There are two levels of certification offered by Red Hat; RHCT (Red Hat Certified
Technitian) and RHCE (Red Hat Certified Engineer). The RHCE is the more
advanced certification. The RHCE and RHCT exams are performance based
practical labs. In other words you are given a exam based on situations that you will
find in the real world. As of the end of 2003 these exams are based on the Red Hat
Enterprise family of products, not Red Hat 9 as it was previoulsy.

RHCT Certification

According to Red Hat 10

RHCT tests a technician-specific subset of the skills tested in
RHCE: * RHCTs will typically not be making the decisions about

Linux Professional Institute
Certification

17

http://www.Linuxcertification.org/
http://www.redhat.com/training/

how to set up production network services and network security.
Thus, RHCT does not test the networking services and network
security skills required to earn RHCE.

The RHCT consists of the following exams:

1. Troubleshooting and System Maintenance (1 hour)

2. Installation and Configuration (2 hours)

To earn the RHCT certification one must successfully complete all the
requirements in Troubleshooting and System Maintenance and must
attain at least 70% for Installation and configuration.

Pre_requisite skills:

• use standard command line tools (e.g., ls, cp, mv, rm, tail, cat, etc.) to create,
remove, view, and investigate files and directories

• use grep, sed, and awk to process text streams and files

• use a terminal-based text editor, such as vi/vim, to modify text files

• use input/output redirection

• understand basic principles of TCP/IP networking, including IP addresses,
netmasks, and gateways

• use su to switch user accounts

• use passwd to set passwords

• use tar, gzip, and bzip2v

• configure an email client on Red Hat Enterprise Linux

• use mozilla and/or links to access HTTP/HTTPS URLs

• use lftp to access FTP URLs

Skills needed for Troubleshooting and System Maintainenance exam:

18 Linux Distributions and Certifications

• boot systems into different run levels for troubleshooting and system
maintenance

• diagnose and correct misconfigured networking

• diagnose and correct hostname resolution problems

• configure the X Window System and a desktop environment

• add new partitions, filesystems, and swap to existing systems

• use standard command-line tools to analyze problems and configure system

Skills needed for Installation and Configuration Exam:

• perform network OS installation

• implement a custom partitioning scheme

• configure printing

• configure the scheduling of tasks using cron and at

• attach system to a network directory service, such as NIS or LDAP

• configure autofs

• add and manage users, groups, and quotas

• configure filesystem permissions for collaboration

• install and update RPMs

• properly update the kernel RPM

• modify the system bootloader

• implement software RAID at install-time and run-time

• use /proc/sys and sysctl to modify and set kernel run-time parameters

The RHCE certification:

The RHCE consists of the following exams:

19

1. Troubleshooting (2.5 hours)

2. Multiple Choice (1 hour)

3. Installation and Configuration (2.5 hours)

To earn the RHCE one must successfully complete all the
troubleshooting tests, score a minimum of 50% for the multiple choice
exam, score at least 70% for both the RHCE and RHCT components of
the exams and attain a minimum of at least 80% for the all the exams as
a whole.

Pre_requisite skills:

• use standard command line tools (e.g., ls, cp, mv, rm, tail, cat, etc.) to create,
remove, view, and investigate files and directories

• use grep, sed, and awk to process text streams and files

• use a terminal-based text editor, such as vi/vim, to modify text files

• use input/output redirection

• understand basic principles of TCP/IP networking, including IP addresses,
netmasks, and gateways

• use su to switch user accounts

• use passwd to set passwords

• use tar, gzip, and bzip2v

• configure an email client on Red Hat Enterprise Linux

• use mozilla and/or links to access HTTP/HTTPS URLs

• use lftp to access FTP URLs

Skills needed for Troubleshooting and System Maintainenance exam:

• boot systems into different run levels for troubleshooting and system
maintenance

20 Linux Distributions and Certifications

• diagnose and correct misconfigured networking

• diagnose and correct hostname resolution problems

• configure the X Window System and a desktop environment

• add new partitions, filesystems, and swap to existing systems

• use standard command-line tools to analyze problems and configure system

• use the rescue environment provided by first installation CD

• diagnose and correct bootloader failures arising from bootloader, module, and
filesystem errors

• diagnose and correct problems with network services (see Installation and
Configuration below for a list of these services)

• add, remove, and resize logical volumes

Skills needed for Installation and Configuration Exam:

• perform network OS installation

• implement a custom partitioning scheme

• configure printing

• configure the scheduling of tasks using cron and at

• attach system to a network directory service, such as NIS or LDAP

• configure autofs

• add and manage users, groups, and quotas

• configure filesystem permissions for collaboration

• install and update RPMs

• properly update the kernel RPM

• modify the system bootloader

• implement software RAID at install-time and run-time

• use /proc/sys and sysctl to modify and set kernel run-time parameters

21

People wanting to attain the RHCE certification must be also capable of configuring
the following network services:

• HTTP/HTTPS

• SMB

• NFS

• FTP

• Web proxy

• SMTP

• IMAP, IMAPS, and POP3

• SSH

• DNS

For each of these services, RHCEs must be able to:

• install the packages needed to provide the service

• configure the service to start when the system is booted

• configure the service for basic operation

• Configure host-based and user-based security for the service

RHCEs must also be able to

• configure hands-free installation using Kickstart

• implement logical volumes at install-time

• use PAM to implement user-level restrictions

22 Linux Distributions and Certifications

11Fear, Uncertainty, Doubt
12 www.gnu.org The Homepage of the GNU and the Free Software Federation
13 www.opensource.org [http://www.opensource.org/]The Home page of the Open Source Initiative

Chapter 3. History and Politics A
Business Oriented Background
Introduction

The goal of this section is to present a version of the history and politics of software
that is released under a license allowing the user the liberty to copy, modify and
redistribute the code.

Many companies using propriety software favour the FUD tactics 11 to stop people
from using Open Source software, therefore it is important to know the history of
Open Source software and become familiar with the role players in the Open Source
community, and in this way be able to make informed decisions regarding which
Operating System and software to use.

Open Source and Free Software Licenses
When you start to get familiar with the Open Source environment, you will notice
that two terms are used: Open Source and Free Software.

Free Software is a term used to describe software that is freely available, which
allows users and developers to copy, modify and redistribute the source code.

Open Source software allows the user the exact same privileges.

“So what is the difference? And which is the correct term to use?” These are
questions only you can answer for yourself, once you have read the following
chapter:

The definition of Open Source, Free Software and Open
Content

Much of the internal debates that range in the Open Source/Free Software
communities, range about the licenses used to distribute software and Operating
Systems. There are two main factions when it comes to Linux;

• the Free Software Foundation (FSF)12

• and the Open Source Initiative (OSI)13.

As you will see from the section below the main difference between these two

www.gnu.org
http://www.opensource.org/

14Richard Stallman www.gnu.org [http://www.gnu.org/gnu/thegnuproject.html]
15The GNU's explanation on the meaning of "Free Software"www.gnu.org
[http://www.gnu.org/philosophy/free-sw.html]
16From the GNU's philosophy page, visit the following link for the exact wording:www.gnu.org
[http://www.gnu.org/philosophy/free-sw.html]

organisations is their motivation for developing the software that is released under a
license that allows freedom to modify, copy and redistribute the code.

The GNU Project and the Free Software Foundation

GNU (GNU's Not Unix) was formed by Richard M. Stallman (RMS) in 1984, when
he became disillusioned by changes in his working environment.

Stallman worked in MIT's Artificial Intelligence labs in an atmosphere where
developers freely shared source code with each other, with the understanding that
this is how software was improved. This changed in the early 1980's when the MIT
lab started using new hardware, which used proprietary hardware. To use the
hardware the developers had to sign non-disclosure agreements.

RMS: The rule made by the owners of proprietary software was, “If you share with
your neighbour, you are a pirate. If you want any changes, beg us to make them.” 14

Stallman left MIT and started the GNU project. He believed that if he wanted to
continue developing software he needed to be able to do so in an environment that
would allow him to share his work with others, even if that meant creating a new
Operating System and new utilities for that Operating System, as well as creating a
license to release these products under.

It is important to understand the meaning of the word 'free' in the
context of Free Software (or Open Source Software), the Free
Software Foundation and Open Content. 'Free' does not refer to the
cost of the product but rather that the user is allowed the Freedom to
access the Source Code for the product (be that a software
application, an Operating System or documentation for an
application.) A popular way of expressing this idea is: "Free
Software" is a matter of liberty, not price. To understand the
concept, you should think of "free" as in "free speech", not as in
"free beer." 15

The Free Software Foundations' definition of Free Software: 16

1. Freedom to use an application, for any purpose.

2. The Freedom to modify the application, to suit your needs.

3. The Freedom to redistribute copies of the application, so as to "help your

24 History and Politics A Business Oriented
Background

http://www.gnu.org/gnu/thegnuproject.html
http://www.gnu.org/philosophy/free-sw.html
http://www.gnu.org/philosophy/free-sw.html

17 www.opensource.org [http://www.opensource.org]

neighbor".

4. Freedom to modify the application and then distribute this modified version to
whoever wants to use it.

The Free Software Foundation has commented on several licenses that claim to be
Free Software licenses. To view this list visit this
[http://www.gnu.org/licenses/license-list.html] page

The Open Source Initiative

The Open Source Initiative (OSI) 17 promotes the development of Open Source
software.

The OSI was formed in 1998 after Netscape released the source code for
Navigator5.0. Netscape decided to do this after they had read "The Cathedral and the
Bazaar". (see our summary of the "Cathedral and the Bazaar" the section called “The
Cathedral and the Bazaar” [32]later in this section.)

Eric Raymond, John "maddog" Hall, Larry Augustin and Bruce Perens are some of
the people involved with the OSI from the start. This was a group of people who felt
that the term "Free Software" as used by the Free Software Foundation is misleading
and that it was not correctly understood despite being in existence since 1984. They
also planned to work closer with commercial companies than the Free Software
Foundation does.

The Open Source Initiative's definition of Open Source software:

“When the application is released under Open Source Licenses it allows the user
many more freedoms than just access to the Source Code. These are:”

1. Free redistribution

The application can be redistributed, either on its own or as a part of a bundle of
other applications. No royalty or other fees are required to do this.

Explanation as I see it: The idea of this is to not lose the long-term benefits
(discussed later) of Open Content Software just to earn some money in the short
term.

2. Source Code

The Source Code for the project must be easily available, if it is not
downloaded with the compiled code (human readable code compiled into code
the machine can read) clear instructions must be given as to where and how the

25

http://www.gnu.org/licenses/license-list.html
http://www.opensource.org

source code can be obtained.

One of the main ideas of Open Source and Free Software is to make the
evolution of software as easy as possible.

3. Derived Works

The license must allow applications to be modified and distributed again with
the same license as the original application.

Explanation as I see it: By allowing people to modify and redistribute work, the
evolution of applications are improved.

4. Integrity of the Author's Source Code

If the author wishes to keep their Source Code as is, they may stipulate that
modified Source Code cannot be distributed, only if they then allow files
(patches) to be distributed with the application that will modify it at runtime.

The author must allow the distribution of applications built (Compiled) from
modified Source Code.

This allows the author to specify that the original Source Code may not be
modified (so that the author can be better recognised for the work done on the
original Source Code), but forces the author to still allow modifications to the
application by way of patch files that will modify the application, but not the
original Source Code.

5. No Discrimination against Persons or Groups

The author may not discriminate against any person or group; the product must
be made available to all people who want to use it.

This is to ensure as wide a range of users as possible, to improve the evolution
of the software.

6. No Discrimination against fields of Endeavour

“The license must not restrict anyone from making use of the program in a
specific field of endeavor. For example, it may not restrict the program from
being used in a business, or from being used for genetic research.”

This is to ensure that the software can be used for commercial purposes.

7. Distribution of License

The same license applies to all the people who the application is redistributed

26 History and Politics A Business Oriented
Background

to.

This is to make sure that some people who the application is distributed do not
have to accept an additional license, (e.g. A Non Disclosure Agreement), to use
the software.

8. License must not be specific to a Product

If an application is taken from a bundle of applications that was released as
Open Content, then that application has the same license as the original bundle
of applications.

This is to ensure that applications can be freely distributed in whatever form
that it may be in. (i.e. part of a bundle or on its own)

9. License must not restrict other Software

The License the application is released under cannot specify that it can only be
distributed or used in conjunction with Open Source software.

This allows distributors of software to decide what software to use and
redistribute, further enhancing the evolution of software.

10. License must be Technology Neutral

For example: the license cannot specify that to use the software you must
download it from a web page, or from a CD-ROM. The license must allow
modification of the application so that it can be used in all environments.

This is so that, if the original application only ran in a GUI environment it can
be altered to so that it can run in a command line environment. Also so that the
License agreement cannot be made in one specific way, i.e. "Click Wrap" to
allow the user to download the file from the web.

Bruce Perens, a leading advocate and developer of Free Software developed the
Open Source Definition. The latest version of the Open Source Definition can be
found on this [http://www.opensource.org/docs/definition_plain.php] page

Summary of difference between Open Source and Free Software:

The Free Software Foundation believes that their cause is a social one, to allow
people to freely and openly use software for the betterment of mankind.

The Open Source Initiative believes that allowing people access to source code and
allowing them to modify these to improve the software is a practical need, not a
social right.

27

http://www.opensource.org/docs/definition_plain.php

Though these two organisations differ on the reasons, they are not against each
other; both believe that proprietary software inhibits the development of useful
software.

“Throughout the rest of this document, I will use the term "Open Source Software"
when referring to either Open Source or Free Software Foundation issues or
products. It was difficult to choose between the two terms. The common
misconception that "free" means free-of-charge and the fact that many people relate
this to a anti-business mindset made me choose to use the term, "Open Source
Software". I do, however, understand what the GNU means with "free software" and
admire them for what they have done for this movement. ” Riaan Bredenkamp

Open Content:

Open Content was an organization that promoted the sharing of materials,
specifically those used to educate people.

To do this it developed licenses that people could use to license their works be this
software or manuals.

The organisation was founded by David Wiley in 1998.

During 2003 Wiley closed the Open Content organization because he felt that the
Creative Commons organisation was doing a better job at creating "licenses for
content" that would be recognised in court legally.

For more information about Open Content, visit this [http://www.opencontent.org/]
page.

More information about the Creative Commons Organisation can be found on this
[http://creativecommons.org/] page

The History of Open Source Software
Linux typically includes many utilities that were developed by the GNU
organisation.

The following section will briefly explain the history of the how the development of
Free Software has led to the development of Linux, as we know it today.

Using Linux to describe an Operating System is incorrect, Linux is the
kernel not the complete Operating System. The kernel is responsible for
the allocation of resources in an Operating System, it allows processes
to utilise the hardware of a computer.

The correct way of describing Linux as an Operating System is

28 History and Politics A Business Oriented
Background

http://www.opencontent.org/
http://creativecommons.org/

GNU/Linux. Since the Operating System consists of Linux as the kernel,
and many other utilities (most of which were created with the assistance
of the GNU project). In the rest of this document we will use "Linux" to
describe the Operating System, since that is how most people refer to it
today.

The GNU Project

Richard M Stallman started the Free Software Federation in 1984, yet that is not
where our story starts.

When Stallman started work in the MIT's Artificial Intelligence Laboratory in 1971,
he found a community of developers who shared software that they had written with
each other, other learning institutes and companies. As Stallman indicates on the
FSF website, the sharing of software was not new or unique to the MIT AI
Laboratory community, it is as old as computers. Just as cooking recipes are shared,
so were software applications.

In the early 80's the MIT hacker community started to disintegrate, a new computer
system (a PDP-10) with a proprietary Operating System that hastened the collapse of
the AI Lab community. To work with the software on the new system, Stallman had
to sign a Non-disclosure agreement with the company who created the PDP-10. Bear
in mind that this was to use the executable files for the software, these are not human
readable, one needs the Source Code of the application to truly understand what it
does, how it does this, without this it is nearly impossible to modify an application to
better suit your needs.

Stallman was not willing to accept an agreement that would mean that he would not
be able to help his fellow developers, he saw it as actively hindering other people
from being able to do their work. Stallman tells of an incident that occurred to him
while he was working in the AI Lab in MIT, where the software that they used to
control their printer in the lab, lacked a few key features. Stallman was refused
access to the source code for the printer's program because the company who created
the printer and its software did not want to allow anybody to see how it worked.
They did this by having their developers sign a non-disclosure agreement.

Stallman had to make a decision to either become one of the developers who were
forced not to help each other or to stop developing or to devise a way where he
would be able to recreate a community where people helped each other to develop
better applications. He realised that he would first need a free Operating System, as
without an Operating System computers cannot function. This was a very brave step,
designing a new Operating System is no small effort.

GNU is born

29

Stallman had made the decision to develop a free Operating System on 27
September 1983. He decided to design it so that it would be compatible with Unix,
then the most stable and widely used Operating System, so that Unix users could
easily use it, and so that applications could be easily transferred to the new
Operating System (a process referred to as 'porting').

Following a Hacker tradition which uses recursive acronyms, the term GNU
(pronounced "guh-noo") was born. This stands for GNU is Not Unix.

Stallman started by developing a compiler, compilers are used to change the
human-readable Source Code into Machine code. The Operating System needs this
machine code to be able to run applications. This proved difficult to do and in reality
it took him a few years to complete the compiler.

Stallman decided to work on a text editor, which he called GNU Emacs. Many
people started to take an interest in Emacs and wanted to use it. He released GNU
Emacs on a FTP server, but not everybody had access to the Internet, this was 1985
remember. To get his Emacs to the people who wanted to use it Stallman started a
software distribution company that would mail people copies of the software for a
small fee. This was a precursor to the many businesses that exist today that make a
profit by redistributing Linux.

People started to join Richard Stallman in creating the GNU system in 1985, to fund
their work they founded the Free Software Foundation, a tax-exempt charity that
would create funds by distributing the software that the GNU had created.

By the time Linus Torvalds started working on his Operating System Kernel in
1991, the Free Software Federation had already written or helped to write a wide
range of software distributed as Free Software.

The birth of the Linux kernel

Linus Torvalds was a student of the University of Helsinki when he announced on
the 25th of August 1991 that he was busy developing a free Operating System.

At the time the only Operating System that made its source code available was
MINIX. An Operating System developed by Professor Andrew S. Tanenbaum to
teach his students the inner workings of an OS. MINIX was very limited and could
only work on hardware based on the Intel 8086 framework. MINIX was also not
Open Source, it had to be licensed, though the Source Code was available to licensed
users. When Linus Torvalds started working on the kernel that would become Linux
it was the start of the Internet boom, and Linus quickly got help from developers
around the world, debugging the code and offering solutions to issues they found.

The Linux kernel was released under the GNU GPL License. Which allowed
anybody to download the source files, modify them and use them in their own
projects.

30 History and Politics A Business Oriented
Background

18From:www.gnu.org [http://www.gnu.org/software/hurd/hurd.html]

The Internet boom allowed many people to continue work on the project; new
versions of the kernel were released often (sometimes even weekly). This had a
number of benefits, perhaps the most notable is the fact that the kernel improved
significantly in a very short period of time, another is that with this many releases it
appealed to a wide range of users; those that wanted to be on the leading edge and
worked on the development used the latest version of the kernel, whilst those want
more stability used older versions. The Linux Kernel grew in popularity quickly.

The GNU's kernel

The GNU has been working on its own kernel for some time now. It is called the
GNU HURD.

The official definition for HURD is:

'Hurd' stands for 'Hird of Unix-Replacing Daemons'. And, then,
'Hird' stands for 'Hurd of Interfaces Representing Depth'. We have
here, to my knowledge, the first software to be named by a pair of
mutually recursive acronyms.18

Its is believed that it will be released very soon (since it is Free Software you can
already download and use it but it is not yet ready to be used in a production
environment)

Benefits of the Open Source Development
methods

When one examines the developmental history of the Linux kernel the point that
stands out is the extraordinary improvements made to the Linux kernel in such a
short time.

This success is attributed to the knowledge of the developers who contribute to the
project, and the development model used by Linus Torvalds.

Proprietary software is usually developed by small teams working closely together
and products are only released once the developers believe that they have found all
the problems in the code, this results in long development times and, as we all know,
code that still contains many problems.

The model used by the Open Source community is more open than that, it uses many
developers, often people who have never met each other physically, and releases
code often. This is done because Open Source developers depend on their users to
help them improve the code.

Benefits of the Open Source
Development methods

31

http://www.gnu.org/software/hurd/hurd.html

The Cathedral and the Bazaar
The Cathedral and the Bazaar(CatB) is paper written by Eric S Raymond (ESR),
which examines the differences between the development models used by the Open
Source community (the Bazaar) and the one used by Proprietary software companies
(the Cathedral). Raymond first presented The Cathedral and the Bazaar (CatB) on 21
May 1997 at the official "Linux Kongress" (sic). The latest revision was released on
the 11th of September 2000.

In The Cathedral and the Bazaar, Eric Raymond examines the Linux
kernel development model and comes to the conclusion that not
only does it work, but that it is perhaps the only economical way of
developing large systems that satisfy most of the people. He also
considers and responds to the arguments raised by people who
prefer the traditional Cathedral style of development.

—ESR; Cathedral and the Bazaar

This is Raymond's abstract of the work:

I anatomize a successful open-source project, fetchmail, that was
run as a deliberate test of the surprising theories about software
engineering suggested by the history of Linux. I discuss these
theories in terms of two fundamentally different development styles,
the "cathedral" model of most of the commercial world versus the
"bazaar" model of the Linux world. I show that these models derive
from opposing assumptions about the nature of the
software-debugging task. I then make a sustained argument from the
Linux experience for the proposition that "Given enough eyeballs,
all bugs are shallow", suggest productive analogies with other
self-correcting systems of selfish agents, and conclude with some
exploration of the implications of this insight for the future of
software.

—ESR; Cathedral and the Bazaar

Who is Eric Raymond?

Eric S. Raymond is the president of the Open Source Initiative (OSI)

Raymond was involved in Unix and Open Source development for the GNU before
Linus Torvalds released the Linux kernel, which made him used to the Cathedral
style of development, small teams working closely together on a project and only
releasing the application once it was close to perfection.

Torvald's methodology of development (releasing early and often, delegating as
much of the work as possible and being open to almost all suggestions) seemed

32 History and Politics A Business Oriented
Background

strange to Raymond.

No quiet, reverent cathedral-building here rather, the Linux
community seemed to resemble a great babbling bazaar of differing
agendas and approaches (aptly symbolized by the Linux archive
sites, who'd take submissions from anyone) out of which a coherent
and stable system could seemingly emerge only by a succession of
miracles.

—ESR; Cathedral and the Bazaar

Raymond wanted to learn why the model used in the development of Linux worked
so well, and he worked hard to learn more about it. In 1996 he had the chance to
apply Linus's methods in a project he had just started. He needed an email client that
would allow him to automatically download email from the community Internet
Service Provider he had helped to start. Raymond had tried a few of the existing
client applications, but none did exactly what he wanted it to do, so he did what all
good hackers do, he decided to develop a new POP client. This was the perfect
opportunity for him to also test the bazaar style of development. The application that
was developed is called fetchmail and is still used extensively today.

A Summary of "the Cathedral and the Bazaar"

In CatB Raymond lists 19 reasons why he believes the Bazaar development model
works well.

“I will discuss these, as I understand them.” Riaan Bredenkamp

1. Every good work of software starts by scratching a developer's personal itch.

Raymond needed a POP email client that would allow him to automatically
fetch mail from his ISP (Internet Service Provider), the clients that were
available did not have the necessary capabilities Raymond needed. In the Open
Source world this is very true. If there were a need for something a developer
would have all the resources needed to develop a better application. A
developer is also sure to have the support of many other people who have felt
the same need for a better application. Applications are developed for the love
of the art, not for any other reasons.

2. Good programmers know what to write. Great ones know what to rewrite (and
reuse).

Because you are dealing with Open Source software the source code is always
available. It would be senseless to re-design the wheel every time you need a
mode of transportation, so why do it when you are developing an application?
Raymond looked at 9 POP mail clients and chose 'fetchpop' by Seung-Hong

33

Oh, who included some of the changes that Raymond had written, in version
1.9 of fetchpop.

3. "Plan to throw one away; you will, anyhow." (Fred Brooks, The Mythical
Man-Month, Chapter 11)

Raymond wrote the code that allowed fetchpop to do what he wanted it to do,
but was not satisfied with the total product. While searching for mailclients he
could modify he had come across Carl Harris's popclient. Though fetchpop did
what he wanted it to do Raymond had two reasons for switching to popclient,
popclient supported multiple protocols including IMAP (Internet Mail Access
Protocol), which is more powerful than POP3. He also had another more
theoretical reason to change, and that was to throw the first code that he had
written away. This was one of the ideas that were often used by the people
developing the Linux kernel.

4. If you have the right attitude, interesting problems will find you.

Carl Harris, the author of popclient, had lost interest in the project and he and
Raymond decided that Raymond should take responsibility of popclient.

Raymond suddenly was no longer writing a few modifications for an existing
mail client, now he was maintaining a mail client and he was full of ideas that
would lead him to make many changes to popclient.

5. When you lose interest in a program, your last duty to it is to hand it off to a
competent successor.

It is important for developers to realise when it has become time for someone
else to take responsibility for his or her project. Once Raymond had proved to
Harris that he was the correct person for the job he graciously handed the reins
over to Raymond. This attitude assures the continued development and growth
of a project.

6. Treating your users as co-developers is your least-hassle route to rapid code
improvement and effective debugging

When Raymond took over the popclient application, he did not only inherit the
management of the code but also the users of popclient. In the Linux
development model, users have the ability to be co-developers (if used
correctly). This is one of the main reasons why the Linux kernel has been as
successful as it has.

7. Release early. Release often. And listen to your customers.

Previously most developers felt that this was a bad policy for bigger projects.

34 History and Politics A Business Oriented
Background

They felt that releasing buggy software would cause the users of the software to
give up on the product.

Yet this was not the case with the Linux kernel. Linus Torvalds often released a
new version of the Linux kernel more than once a day! This was what kept his
users satisfied and stimulated. 'Stimulated by the prospect of having an
ego-satisfying piece of the action, rewarded by the sight of constant (even
daily) improvement in their work. ' ESR; CatB

8. Given a large enough beta-tester and co-developer base, almost every problem
will be characterized quickly and the fix obvious to someone.

Raymond had dubbed this the 'Linus Law'. Raymond believes that this is the
core difference between the cathedral and bazaar development models.

In the cathedral model it often takes months for the developers to be satisfied
that they had eliminated most of the problems in the program.

In the Bazaar model, you have so many people looking and using the code that
most bugs are found quickly. Even if this happens at the expense of having a
major problem in a few of the released versions, the benefits of rapid
development are still enough to justify this.

For the users who did not want to use the latest version of the Linux kernel,
Torvalds also made available the older versions in which most known problems
were dealt with. This meant that a wide range of people would use the kernel,
not just the few people that wanted to be on the bleeding edge of the
technology.

9. Smart data structures and dumb code works a lot better than the other way
around.

Raymond started maintaining popclient by first rewriting it, he did this for two
reasons;

a. To understand how the application works;

b. And also to change the way it was coded so that the data structures were
more robust.

In other words he redesigned the way that the different protocols were
expressed in terms that the kernel and thus the hardware could understand.

10. If you treat your beta-testers as if they're your most valuable resource, they will
respond by becoming your most valuable resource.

35

Raymond had decided to develop his new mail client using the Linux kernel
development model. He did this by doing the following:

I released early and often (almost never less often than every ten
days; during periods of intense development, once a day). I grew my
beta list by adding to it everyone who contacted me about fetchmail.
I sent chatty announcements to the beta list whenever I released,
encouraging people to participate. And I listened to my beta-testers,
polling them about design decisions and stroking them whenever
they sent in patches and feedback.

—ESR; CatB

Raymond was amazed at the response he got from the users of the application.

I got bug reports of a quality most developers would kill for, often
with good fixes attached. I got thoughtful criticism, I got fan mail, I
got intelligent feature suggestions.

—ESR; CatB

11. The next best thing to having good ideas is recognizing good ideas from your
users. Sometimes the latter is better.

One of the users of popclient sent Raymond some code that would allow it not
just to be a local mail delivery agent (just fetch mail and make it available on a
workstation), but also enable it to be a Mail Transport Agent (MTA). By using
SMTP (Simple Mail Transfer Protocol) it would do the job better and giver it
more capabilities. Thus one user's ideas allowed the project to grow
fundamentally.

12. Often, the most striking and innovative solutions come from realizing that your
concept of the problem was wrong. By using SMP and changing popclient to
act as a Mail Transfer Agent rather than a Mail Delivery Agent Raymond could
remove some of the most redundant features of popclient and make it easier to
use and more stable.

...the benefits proved huge. The [clumsiest] parts of the driver code
vanished.

—ESR; CatB

13. "Perfection (in design) is achieved not when there is nothing more to add, but
rather when there is nothing more to take away." (Antoine de Saint-Exup?)

Raymond states that when your code evolves to be better and simpler, then you
know it is better.

36 History and Politics A Business Oriented
Background

There is a more general lesson in this story about how SMTP
delivery came to fetchmail. It is not only debugging that is
parallelizable (sic); development and (to a perhaps surprising extent)
exploration of design space is, too. When your development mode is
rapidly iterative, development and enhancement may become
special cases of debugging-fixing 'bugs of omission' in the original
capabilities or concept of the software.

—ESR; CatB

Popclient has changed to such an extent that Raymond believed it was time to
change its name, fetchmail was born.

14. Any tool should be useful in the expected way, but a truly great tool lends itself
to uses you never expected.

Raymond started to see that fetchmail could become what is termed a 'category
killer', software that causes all others in that field to be forgotten. To achieve
this, fetchmail would have to be able to do things he never set planned for it to
do.

I'd have to write not just for my own needs, but also include and
support features necessary to others but outside my orbit.

—ESR; CatB

Whilst at the same time making sure the program stayed simple and robust.

15. When writing gateway software of any kind, take pains to disturb the data
stream as little as possible - and never throw away information unless the
recipient forces you to!

By following this rule Raymond was able to satisfy another demand from his
users (8-bit MIME support). In the ASCII character set the eighth bit is not
used, and another developer might have been tempted to use this bit to transport
data internally in the program, Raymond was not, and thus was able to support
8-bit MIME without having to rewrite major parts of the code.

16. When your language is nowhere near Turing-complete, syntactic sugar can be
your friend.

17. A security system is only as secure as its secret. Beware of pseudo-secrets.

Some of the users asked Raymond to encrypt the password in the control file of
the application, so that people who were looking at the control file would not be
able to see the password in plain text. Raymond points out that anybody who
has the permissions to read the control file would be able to find out, from the

37

19'Egoboo' is a word that ESR uses in Cathedral and the Bazaar. I believe he means that open
source development is successful partly because the individuals who are working on the project
enjoy having their ego stroked. And because anybody can see their code, everybody will know
how good they are

code, which decoder to use to read the password. So security was not really
enhanced, the user would just have been lulled into a false sense of security.

18. To solve an interesting problem, start by finding a problem that is interesting to
you.

It is also obvious that if you have developed something that is interesting to you
and solves problems for you, that it would play the same role for other people.

19. Provided the development coordinator has a communications medium at least
as good as the Internet, and knows how to lead without coercion, many heads
are inevitably better than one.

In The Mythical Man - Month, Fred Brooks observed that
programmer time is not [interchangeable] ; adding developers to a
late software project makes it later.

—ESR; CatB

This has become known as Brook's Law, but if it was true, how could the Linux
kernel have been such a success?

Gerald Weinberg's classic The Psychology of Computer
Programming supplied what, in hindsight, we can see as a vital
correction to Brooks. In his discussion of "ego less programming",
Weinberg observed that in shops where developers are not territorial
about their code, and encourage other people to look for bugs and
potential improvements in it, improvement happens dramatically
faster than elsewhere"

—ESR; CatB

Clearly the Bazaar method needs to use this ego less method of development if
it is to succeed. Something in which Linus Torvalds exceeds;

We may view Linus's method as a way to create an efficient market
in egoboo19 - to connect the selfishness of individual hackers as
firmly as possible to difficult ends that can only be achieved by
sustained cooperation.

—ESR; CatB

Conclusion

Perhaps in the end the open-source culture will triumph not because

38 History and Politics A Business Oriented
Background

20The understanding of the man on the street of the term "hacker' is incorrect. Developers have been
calling each other Hackers since the 1960's. In this context a Hacker refers to a developer who is able to
improve a program in an intelligent and elegant manner. When using to people who gain unlawful entry
into computer networks you should use the term "Cracker'.

cooperation is morally right or software "hoarding" is morally
wrong (assuming you believe the latter, which neither Linus nor I
do), but simply because the closed - source world cannot win an
evolutionary arms race with open - source communities that can put
orders of magnitude more skilled time into a problem.

—ESR; CatB

The book has been released under the Open Publication License v2.0 and can be
read online on this [www.catb.org/~esr/writings/cathedral-bazaar/cathedral-bazaar/]
page

Why is Free Software not used extensively in
the Enterprise environment?

Why has Free Software in general, and Linux specifically, not been as widely used
in the enterprise environment as the proponents of it expected? Developers of
proprietary software would have you believe that Linux is not suited to the corporate
environment. But this is not true, the next section attempts to highlight why it is that
Linux has not yet taken over from Microsoft, as the Operating System of choice for
home and corporate users.

Introduction

Linux and Free Software must be a marketer's nightmare, Linux is perceived to be
an Operating System used only by highly technical people, who hardly ever leave
their homes or offices. Worse, the people who develop Linux call themselves
hackers, so how do you sell a product to companies when people think that only
'uber'-geeks can use it, and that they use it to break into bank accounts via the
Internet?20The truth of the matter is that home users and more importantly CEO's
(Chief Executive Officer) and CTO's (Chief Technology Officers) have the
perception that Linux is difficult to use and that would not be possible to use it in
their environment.

When you examine how Microsoft has marketed their products and compare that to
the way Linux as been marketed to the world, one begins to understand why
Windows is the Operating System of choice, instead of Linux.

Traditionally Linux has been marketed to the business world, from the bottom up.
Since it was only the technical people who knew about Linux, and how to use it,
they were the people telling their bosses about how stable and cost-effective it is
compared to the products offered by Sun, IBM or Microsoft. Unfortunately few

Why is Free Software not used
extensively in the Enterprise

39

www.catb.org/~esr/writings/cathedral-bazaar/cathedral-bazaar/

technically minded people are also good businessmen, or know how to communicate
their ideas to people who have the power to make decisions that will affect the
company.

Microsoft, arguably the most successful software company around today, has
marketed their products to the Chief Executive Officers, Chief Technology Officers
and Chief Financial Officers. Not to the people who would use it, but rather the
people who may not necessarily have the knowledge required to make a sound
technical decision, but the people who are able to make financial decisions.

When deciding whether or not to use Linux in a business environment, one needs to
make a distinction between an Operating System for a server, and an Operating
System for a desktop. Whilst all Linux proponents would agree that it is very well
suited to the server environment, some would say that when it comes to desktop
systems, meant to be used as workstations, Linux may not yet be polished enough to
replace Microsoft's products. Though, recent versions from SUSE and Red Hat are
very close to being perfect for the desktop.

For Linux to gain more acceptance in the Business world, it will need to be marketed
in the correct way.

CEO's would need to be made aware of why Linux is a viable option to use in the
business environment, which is what the next section attempts to highlight. I will not
be able to turn you into a marketer , or a business person, but I will attempt to list the
reasons why Linux should be used.

Cost

Surely this is one of the main draw cards that Linux has over its competitors. During
the IT industry boom in the late 1990', Information Technology seemed to promise
unbelievable growth in profits and productivity. After the .com bust in 2000 many
companies have slashed their IT budgets drastically. IT just did not deliver what it
promised.

Today, businesses want even more out of the IT infrastructure, but they are more
cautious when it comes to spending. Unlike the products from companies like IBM
and SUN, Linux can run on almost any hardware architecture, you can use Linux to
run your file server using the normal Pentium/AMD architecture. Of course it can
run on other more obscure architectures, you can even run it on a Xbox gaming
system. (Though that is not so strange once you know that the Xbox is just an IBM
PC that is meant to be used for gaming exclusively. visit this
[xbox-Linux.sourceforge.net] page for more information on how to install Linux on
a XBox) What is impressive is that people are creating clustered computer systems
from these 'hacked' Xboxes. They are using the Xbox, because it uses good-quality
hardware, is relatively inexpensive and is very quiet.

There are Linux distributions like Red Hat Fedora, Debian, and Gentoo that you can

40 History and Politics A Business Oriented
Background

xbox-Linux.sourceforge.net

21As I am writing this, the MyDoom virus is being regarded to be the fastest spreading of all time. Three
day after its release the mi2g Intelligence Unit (mi2g.net), a digital risk firm, has said that it has caused
more than 20 billion dollars worth of damage. From this
[http://thewhir.com/marketwatch/myd012904.cfm] page

use completely free of charge, and there are distributions that require the user to
purchase a license, for example Red Hat Enterprise 3 and SUSE Linux Enterprise 8.
The advantage of buying a license is that you get support from the company who has
created the Linux Distribution, including regular security updates and bug fixes.
With the distributions that are free of charge, you depend on the community of users
of that distribution for the security updates and bug fixes. Admittedly, this is a very
enthusiastic community and these fixes are made available before most people know
that they exist, but this is not a risk that many companies are willing to take. They
would rather pay somebody for guaranteed service than depend on no-cost services.

Productivity

Free Software is renowned for its stability, which translates to better uptime (the
time between rebooting the system). Many commercial web-hosting companies use
Free Software to run their servers, and to deliver the pages to Internet users.

Security

Security is another reason why businesses would benefit from switching to Linux.
Every year millions of dollars are lost worldwide by damage caused by Trojans,
worms and viruses that affect Microsoft products. These programs exploit features in
Microsoft that (it seems) Microsoft is unwilling to fix, since it would mean that
Microsoft loses some of its ease of use. In Linux a much stricter security policy is
implemented than on Microsoft Windows. In Linux the root user needs to allow any
and all programs that want to run on the system. This can only be done by the root
user (the administrator of a Linux machine).

In Microsoft systems, programs are allowed to run without any input from the user.
In other words a malicious program can install itself on a Microsoft system, and run
itself without the user of that system even knowing about it.

A classic joke: "Heard about the Linux virus? It works on the honor system. First it
asks you to please e-mail it to all your friends, then it asks you to please log back in
as root so it can tell you how to trash your system."21

Maturity

As discussed earlier, Linux is based on the Unix system, which has been used by
enterprises since the early 1980's. With the release of version 2.6 of the Linux
Kernel early in 2004 Linux has evolved even further.

(Joseph Pranevich has written an exhaustive analysis of what capabilities the latest
Linux kernel bring to the Linux Operating System, read it at:

environment?

http://thewhir.com/marketwatch/myd012904.cfm

http://www.kniggit.net/wwol26.html It is also included in the appendix Appendix B
[167])

Support

Now that IBM and Novell have thrown their weight behind Linux, one can no longer
say that there isn't a major company who will make support available for Linux
servers and workstations. Many businesses would rather pay a license fee and be
sure that support for their IT infrastructure is just a phone call away.

On the 13th of January 2004 Novell finalised its acquisition of SUSE Linux ,Press
Release
[http://www.novell.com/news/press/archive/2004/01/pr04003.html?sourceidint=susehomebottom_en-us]
and this means that there is now a multi-billion dollar company offering support for
Linux on an Enterprise level, from servers to workstations.

Does Linux meet industry standards i.e. POSIX, IEEE, X/OPEN ?

When choosing a Operating System the informed person would want to know it
follows certain standards. The Portable Operating System Interface standard was
created to ensure that Unix-like Operating Systems use applications that look and
feel similar to those used on other POSIX compliant Operating Systems.

If an Operating System is POSIX compliant, you can be assure of the following:

1. It is an acceptable level of quality,

2. It will have the same look and feel as other products on the market, this makes
training and support an easier task to source and implement,

3. It has industry input that has been built up over time and experience of other
technical learning curves when building and supporting other operating
systems.

The POSIX standard is maintained by the Portable Application Standards
Committee (PASC) of the IEEE organisation. The standard is heavily influenced by
Unix - and in the latest revision now merges with The Open Group's Base
Specifications (LSB) which comprise the core of the Single Unix Specification.

The POSIX standard was developed so that people developing Operating Systems
could reference one standard so as to ensure that different Operating Systems would
be able to interoperate with each other. Linux is not completely compliant with
POSIX, a draft document has been released by the Open Group detailing conflicts
between POSIX and their Linux Standards Base (LSB). This can be viewed at:
http://www.opengroup.org/personal/ajosey/tr28-07-2003.txt

42 History and Politics A Business Oriented
Background

http://www.novell.com/news/press/archive/2004/01/pr04003.html?sourceidint=susehomebottom_en-us
http://www.novell.com/news/press/archive/2004/01/pr04003.html?sourceidint=susehomebottom_en-us
http://www.opengroup.org/personal/ajosey/tr28-07-2003.txt

22

The Open Group is a trademark of The Open Group.
Unix is a registered trademark of The Open Group in the US and other countries.
POSIX is a registered trademark of the IEEE Inc.
LSB is a trademark of the Free Standards Group.

The Open Group's LSB certification is another standard that has been set against
which developers can test their products. Visit this
[http://www.opengroup.org/lsb/cert/docs/faq.tpl] page to find out more about this
certification. The LSB is a standard created to ensure greater conformity between the
different Linux Distributions, whilst the POSIX standard is meant to ensure greater
conformity between all Unix-like operating Systems.22

Exercises and Quiz

Please note that if you cannot answer these questions then maybe you should read
the introduction again.

1. Why would it be essential that you have an understanding of the business
benefits and aspects to Linux, Open Source and Free Software?

2. Why would the conventional business world frown upon using these products?

a. Conventional business in a non computer-related sense (e.g insurance,
furniture manufacturer).

b. Conventional business in a computer related sense (e.g computer
manufacturer, software development company).

3. Are Unix and Linux the same product?

4. Itemise a few of the players in the politics surrounding the use and development
of Open Source and Free Software in a business related world. (Halloween
papers?)

5. Do you understand how this course works and what equipment you will need to
be able to complete this course?

43

http://www.opengroup.org/lsb/cert/docs/faq.tpl

Setup of Linux Emulator for Fundamentals Course

In order to make this course more accessable to students, we decided to provide a
Virtual Linux Environment in which you could experiment. We built a
mini-installation of Debian Linux within the Bochs IA-32 Emulator. Bochs can
emulate the Intel x86 CPU, common I/O devices, and even a custom BIOS.

This means that you can have a fully working Linux system running on your
Windows desktop machine. You should have access to the self-installing win32
executable, either on CD or via the course website.

You can download Bochs with the Debian GNU/Linux image mathew West created
from this link [http://learnlinux.tsf.org.za/moodle/resources/bochs-2.1-debian.exe] .

Debian GNU/Linux, Bochs and NSIS are all open source products, licensed under
the GPL.

Debian: http://www.debian.org/

Bochs: http://bochs.sourceforge.net/ http://bochs.sourceforge.net/

NSIS: http://nsis.sf.net/

44 History and Politics A Business Oriented
Background

http://learnlinux.tsf.org.za/moodle/resources/bochs-2.1-debian.exe
http://www.debian.org/
http://bochs.sourceforge.net/
http://nsis.sf.net/

23 Free Software Federation -- http://www.fsf.org/ [http://www.fsf.org/]
24 GNU's Not Unix -- http://www.gnu.org/ [http://www.gnu.org/]
25 University of California, Berkeley -- http://www.berkeley.edu/ [http://www.berkeley.edu/]
26 Berkely Software Distribution -- http://en.wikipedia.org/wiki/Berkeley_Software_Distribution
[http://en.wikipedia.org/wiki/Berkeley_Software_Distribution]

Chapter 4. Essentials

What is Linux?
An operating system is composed of two major parts; these parts are known as the
"kernel" and the "userland".

The kernel is responsible for handling communication between the physical
hardware and the software running on the machine.

The "userland" is comprised of system utilities and user applications. These include
editors, compilers and server daemons. System utilities allowing you to maintain,
monitor and even upgrade your system are also included.

The phrase "Linux operating system" is a misnomer, as Linux is a kernel, and
requires additional software in order to make it an operating system.

A Linux distribution is comprised of the Linux kernel, and a collection of "userland"
software. The software is usually provided by the FSF23 and GNU24 organisations,
as well as many private individuals. Some of it even originates from UCB's25

BSD26 Unix operating system.

There is some confusion over whether the word should be written as
"Unix" or "Unix". Both forms are popular and are used interchangeably.
Dennis Ritchie says that the all-caps spelling originated from CACM's
1974 paper, "The Unix Time-Sharing System". Apparently because "we
had a new type setter and troff had just been invented and we were
intoxicated by being able to produce small caps." Dennis Ritchie feels
like it should be spelled "Unix", as it is a word and not an acronym.
Therefore, this is the format that we will use in this document.

Some commercial Linux distributions even include commercially developed
software, often unique to that particular distribution. An example of this would be
SuSE Linux's "Openexchange" Server™.

There are many Linux distributions that are available. All of them use the Linux
kernel, but they usually differ in what software is available as part of the "userland"
how that software is managed and packaged.

http://www.fsf.org/
http://www.gnu.org/
http://www.berkeley.edu/
http://en.wikipedia.org/wiki/Berkeley_Software_Distribution

Unlike most Unix operating systems, which are based on previous versions of Unix,
ultimately all leading back to the original "Unix System" from Bell Labs, the Linux
kernel was written from scratch. However, Linux based operating systems follow
and implement the Unix paradigm closely enough, that the bulk of this section of the
course would apply to both Linux and Unix variants.

Structure of a Linux Based Operating
System.

A Linux based operating system is structured in much the same way as other
operating systems are structured.

Figure 4.1. Operating Systems Layers

Hardware
This is the physical equipment of which your computer is composed; this includes
things like your keyboard and mouse, your video card and monitor, as well as your
network card, if you have one. Other not-so-obvious pieces of hardware are your
CPU and the RAM in your system.

Kernel
The Linux kernel acts as the interface between the hardware mentioned above, and
the rest of the operating system. The Linux kernel also contains device drivers,
usually ones, which are specific to the hardware peripherals that you are using.

The kernel is also responsible for handling things such as the allocation of resources
(memory and CPU time), as well as keeping track of which applications are busy

46 Essentials

with which files, as well as security; and what each user is allowed to do on the
operating system.

Standard Library of Procedures
A Linux based operating system will have a standard library of procedures, which
allows the "userland" software to communicate with the kernel. On most Linux
based operating systems, this library is often called "libc".

Some examples may include calls to ask the kernel to open up a file for reading or
writing, or to display text on the display, or even read in keystrokes from the
keyboard.

Standard Utilities and User Applications
A Linux based system will usually come with a set of standard Unix-like utilities;
these are usually simple commands that are used in day-to-day use of the operating
system, as well as specific user applications and services. This is typically software
that the GNU Project has written and published under their open source license, so
that the software is available for everyone to freely copy, modify and redistribute.

Some examples would be the commands, which allow users to edit and manipulate
files and directories, perform calculations and even do jobs like the backups of their
data.

Lateral thinking with further details on the
Operating System Simone Demblon

How These All Work Together

One of the benefits of Unix, and thus also of Linux, is the fact that it's designed to be
a multi-user and multi-tasking operating system - in other words more than one user
can be working on the same system at the same time - via different consoles, pseudo
and dumb terminals, or perhaps even by scheduling some of their tasks to occur
while they're not at their keyboard. This is an age where sharing information has
become paramount and therefore this type of operating system can only be an
advantage in a networked environment.

However, most PCs are single CPU systems, and, technically, the CPU cannot
handle more than one task at a time - as is implied by the word "multi-tasking". The
trick to multi-tasking is therefore part of the operating system, rather than the system
hardware.

The kernel divides up the time alloted to tasks; these are called "time slices". The

Standard Library of Procedures 47

27It is possible to do this though; such a technique is called "CPU affinity"

kernel is responsible for running the tasks on the CPU, saving their state and
removing them, and then replacing them with the next task for it's allocated "slice of
time". This gives the impression that the system is performing many tasks
concurrently, but it is in fact performing small parts of each task, one at a time, in
quick succession.

The process whereby the kernel swaps tasks on and off the CPU is known as
"context switching". Each task has its own environment, or context, which the kernel
has to remember in order to fool the process that it is running on the CPU all on its
own without any interruptions.

On machines with more than one CPU, a technique called Symmetric
Multiprocessing (SMP) is used to do the time slicing over multiple CPU's.
Obviously, with this system, the tasks are actually been done concurrently, although
it is rare that a specific CPU is assigned to a single specific process.27

Process Flow:

When a user runs a standard utility or application, that software makes a call to the
kernel, via the standard library of procedures, requesting system resources, such as
the contents of files or the input being feed in via the keyboard. The kernel in turn
then queries the actual hardware for this information, and then returns it, again via
the standard library of procedures layer.

This layering is what provides the system with a level of stability. If your application
crashes for some reason, it is seperated enough from the kernel to prevent it taking
down the whole system.

Logging into a Linux System
Login

Once you have your Linux system up and running, you will be presented with a
prompt asking for your username. This is often referred to as the login prompt.

Debian GNU/Linux
3.0 debian tty1
debian login:_

Once you've entered your username, you will be prompted for a password:

debian login: guest

48 Essentials

Password:_

Like Unix, Linux is case sensitive, so you need to make sure that both your
username and password are entered in the correct case.

You will notice that your password is not echoed to the screen as you type it; this
stops someone from being able to read over your shoulder and make a note of your
password.

A good rule of thumb is to keep usernames in all lowercase, as this keeps things
simple.

However, passwords should be made as difficult as possible to guess; preferably
they should consist of both upper and lower case letters, as well as numbers and
punctuation marks.

Traditional Unix systems have an 8 character limit on usernames and passwords.
However, Linux based operating systems have a limit of 256 characters. Most Linux
distributions can also be configured to operate in "legacy mode", using 8 character
usernames and passwords, and so allow better interoperability with existing Unix
installations.

Once you've typed in your password hit enter and you should be greeted with a
welcome screen and you should be presented with a shell prompt and a flashing
cursor.

If you're using the Virtual Linux Environment provided with this course,
then your login name will be "student" and your password will be
"student".

Debian GNU/Linux 3.0 debian tty1
debian login: student
Password:

Linux debian 2.2.20-idepci #1 Sat Apr 20 12:45:19 EST 2002 i686
unknown Most of the programs included with the Debian GNU/Linux system are
freely redistributable; exact redistribution terms for each program are
described in the individual files in /usr/share/doc/*/copyright Debian
GNU/Linux comes with ABSOLUTELY NO WARRANTY, to the extent permitted by
applicable law.

student@debian:~$ _

Once you've logged into the system for the first time, it is usually a good idea to set
your password to something new, one that will be difficult for other people to guess.

49

The command to do this is "passwd" (short for "password"). This command should
allow you to set your password on any Unix-like system.

You will be prompted for your old password, to ensure that it is really you at the
keyboard, and you will then be prompted twice for your new password. This ensures
that you don't make a typo!

debian login: student
Password:

Linux debian 2.2.20-idepci
#1 Sat Apr 20 12:45:19 EST 2002 i686 unknown Most of the programs included
with the Debian GNU/Linux system are freely redistributable; the exact
distribution terms for each program are described in the individual files
in /usr/share/doc/*/copyright Debian GNU/Linux comes with ABSOLUTELY NO
WARRANTY, to the extent permitted by applicable law.

student@debian:~$ passwd
Changing password for student (current) Unix password:
Enter new Unix password:
Retype new Unix password:
passwd: password updated successfully
student@debian:~$ _

Once you've successfully changed your password, you can type the 'exit' command
to exit out of the session.

Debian GNU/Linux 3.0 debian tty1
debian login: student

Password:
Linux debian 2.2.20-idepci

#1 Sat Apr 20 12:45:19 EST 2002 i686 unknown Most of the programs included
with the Debian GNU/Linux system are freely redistributable; the exact
distribution terms for each program are described in the individual files
in /usr/share/doc/*/copyright Debian GNU/Linux comes with ABSOLUTELY NO
WARRANTY, to the extent permitted by applicable law.

student@debian:~$ passwd
Changing password for student
(current) Unix password:
Enter new Unix password:
Retype new Unix password:
passwd: password updated successfully
student@debian:~$ exit <enter>

The Password File
In the previous section, you saw that the system was able to validate your identity
based on your username and password. In this section, we will look at the file which
is commonly used to store this information.

One of the most important files on any Unix-like system is the password file; this

50 Essentials

file is located in the "/etc/" directory, and is called "passwd".

The file originated on Unix 7th Edition, and maintains the same format to this day: 7
colon-delimited fields. These fields are, in order:

• username

• password placeholder

• user id

• group id

• GECOS field

• home directory

• shell

The following is an excerpt from the password file:

root:x:0:0:root:/root:/bin/bash

Table 4.1. /etc/passwd

user Name Password
Placeholder

User ID Group ID Gecos
Field

Home
Directory

Shell

root x 0 0 root /root /bin/bash

Your "user id" is a numeric identifier, which the operating system uses to identify
which files belong to you. The system always thinks of you in terms of a number! It
uses the passwd file to convert the number into a more human-friendly form; your
username. This username is a name that you have chosen or that has been given to
you by the system administrator and is the name that you will use to log in to the
system.

Your "group id" is very similar. A Unix group may contain none, one or more users,
who will then be able to access the files and directories owned by that group, based
on that groups permissions as discussed above. This is useful for sharing files
between two people, as a file can only have one owner.

51

Most modern implementations make use of a concept called "User Private Groups"
(UPG). This means that each user is assigned their own group, which is given the
same name as their username. This user is the only member of that group.

The GECOS field was originally added to early Unix systems in order to enable
interoperability with an operating system written by General Electric, called the
General Electric Comprehensive Operating System (GECOS). Now the field is used
to store your full name, and possibly your room and telephone number.

The final two fields are your home directory, where all your files are usually stored,
as well as your choice of command shell.

On a traditional Unix system, an encrypted version of the password used to exist
where the password placeholder field is now.

The password is encrypted with a one-way hash. This means that the password
cannot be decrypted, but it does mean that people can try and guess your password.

The traditional encryption method was called the Data Encryption Standard (DES),
but most recent versions of Unix, and most Linux distributions, default to using the
MD5 (Message Digest 5) encryption method, which allows for much longer and
difficult-to-compute passwords.

As computers became more and more powerful, it became feasible to try entire
dictionaries of words to guess someone's password.

To counter this, the encrypted password field was moved into a separate file which
only the superuser could read. Under Linux based operating systems, this file is
called the shadow password file (/etc/shadow).

The superuser, or "root user" has complete control over the whole system, and is
able to even override normal file permissions. Normally this login account is only
used by the system administrator when doing system maintenance work.

The shadow password file contains the username and its associated encrypted
password, as well as other fields which deal with password and account expiry.

The system uses the /etc/group file to determine the mapping of group names to
group numbers, as well as to determine the members of each group.

The Shell Command Interpreter
The shell command interpreter is the command line interface between the user and
the operating system. It is what you will be presented with once you have
successfully logged into the system.

52 Essentials

The shell allows you to enter commands that you would like to run, and also allows
you to manage the jobs once they are running. The shell also enables you to make
modifications to your requested commands.

Different Shell Command Interpreters
The Bourne-Again shell is not the only shell command interpreter available. Indeed,
it is descended from the Bourne Shell (sh), written by Steve Bourne of Bell Labs.
This shell is available on all Unix variants, and is the most suitable for writing
portable shell scripts. This is discussed in depth in the Shell Scripting Course.

The default shell, which is provided with most Linux based systems is the
Bourne-Again shell ("bash").

Other popular shells include the C Shell (csh), written at UCB, and so called because
its Syntax is similar to that of the C language.

The TC Shell (tcsh) is an extension of the C shell.

A very popular shell on most commercial variants of Unix is the Korn Shell. Written
by David Korn of Bell Labs, it includes features from both the Bourne shell and C
shell.

Finally one of the most powerful and interesting shells although one that hasn't been
standardised on any distribution that I've seen, is the Z shell. The zsh combines the
best of what is available from the csh line of shell utilities as well as the best that is
available from the bourne or bash line of shell utilities.

One relatively easy way to determine what shell it is that you are currently running is
by looking at the prompt. If you are using a bourne shell or derivative, you will see a
dollar sign. This is more than likely what you will see at your bash prompt at the
moment. If however you are using csh, or tcsh you will see a percentage sign. If you
are logged in as root or the superuser, irrespective of your shell, your prompt will
normally always be a hash.

The bash prompt:

student@debian:~$ _

The tcsh prompt:

student@debian:~% _

Different Shell Command
Interpreters

53

The root prompt:

root@debian:~# _

The Command History within the shell
More modern shells allow you to access your history of commands, and
automatically complete filenames and even correct mistyped commands.

• The up and down arrow keys will allow you to traverse the history of commands
that you have typed in.

• The left and right arrow keys will allow you to navigate the cursor on the
command which you are currently typing.

• The backspace and delete keys will delete the character behind the cursor, and
underneath the cursor, respectively.

• The default mode at your bash prompt is the insert mode, which means that if
you type a character somewhere on the line it will insert it at that position.

• If you then press the insert key it will then toggle the mode so that it will go into
overwrite mode, which means that it will overwrite whatever character is directly
underneath your cursor.

• Another useful feature is tab completion. What this means is that you can use the
tab key in order to be able to complete a command, or be given a list of options
of commands which match what you have typed so far.

Tab Completion:

student@debian:~$ pas <tab>
passwd paste
student@debian:~$ pas_

The shell is telling you that you need to make a choice between those two options.
You can let it know which one by filling in one more letter ("s" or "t" in this case),
and then pressing <tab> again.

student@debian:~$ pas <tab>
passwd paste
student@debian:~$ pass<tab>
student@debian:~$ passwd_

54 Essentials

Now pressing <enter> will finally result in the command being executed.

• Another very useful feature of the bash shell, and one that I would recommend
that you use often, is called "reverse case-insensitive history search". It will
search through your history in reverse and case-insensitively (so it won't worry
whether it was in upper or lowercase) for a command or even part of a command
that you typed.

In order to access this, you can use the shortcut key combination CTRL-R,
followed by a command or a subsection of a command that you have typed and
you will notice that it will go back in history to locate this command

student@debian:~$ <ctrl-r>
reverse-i-search)`p': passwd

The shell has now searched back into your command history for the letter "p", and
the first command that has matched is "passwd", which you typed earlier. Pressing
<enter> now will result in the command being executed. Alternatively, you can use
the arrow keys to scroll through other options, or continue typing letters until you
have a better match.

Configuring your shell environment
There are several files which will affect the behaviour of your bash shell:

• /etc/profile

• /etc/bash.bashrc

• $HOME/.bashrc

• $HOME/.bash_profile

The file where your history of commands is kept is called:

$HOME/.bash_history

Shell Command Processing
In this section, we will explain how the shell interprets the commands, which you
give it to execute.

Configuring your shell
environment

55

It is important to understand that the shell does actually interpret what you type to it.

Special Characters

What this means is that certain special characters will have to be interpreted or dealt
with prior to the execution of the command.

An example is the asterisk or wildcard character. When a shell sees this character it
will attempt to substitute any matching filenames in place of this wildcard character.
It is important to note that this happens before the command is executed.

There are other special characters that will also be interpreted. Different shells
interpret different characters in different ways. The most commonly interpreted
characters are the asterisk, question mark, the various brackets, forward slashes and
quotation marks.

We will learn the significance of each of these characters and the effect that they will
have on the way that the shell executes your commands.

Once the shell has interpreted your command and run replacements where you have
requested it, it will then check and see if the command is perhaps something that
needs to be executed by the shell itself, in other words it is an internal command.

Internal Commands:

An internal command is a routine that is part of the shell itself and does not require
the shell to open up an external file in order to execute it. Examples of internal
commands are clear and history.

Shortcuts and Aliases:

As mentioned before, the bash shell allows you to have shortcuts, or aliases. These
aliases are interpreted before executing the command as an internal or external one.
For example, it is possible to configure bash to treat 'll' (two lowercase letter L's) as
a shortcut to the ls (directory listing) command. This is made into a shortcut by using
the alias command, which is a shell built-in command.

You can use the "type" shell built-in to determine if a command is an internal,
external or an alias.

student@debian:~$ <indexterm><primary>type</primary>
</indexterm>type type

type is a shell builtin
student@debian:~$ <indexterm><primary>type</primary>

</indexterm>type passwd
passwd is /usr/bin/passwd
student@debian:~$

56 Essentials

External Commands:

If the command is not an internal command, then it will be an external command. An
external command is an executable file that exists somewhere on the system and that
you are able to run. An example of an external command is passwd and the name of
the shell itself, in our example: "/bin/bash".

If the command is not a shortcut, or an alias, and is not an internal command but is
an external command, the file that is executed must be readable and executable by
you.

You need to have the appropriate permissions in order to be able to run it. It also
needs to exist in a directory that exists inside a directory that is inside your search
path.

The search path lists all the directories in which the shell can find commands that
you would like to be able to run.

On a usual Linux system, the /usr/bin and the /usr/local/bin directories will all be
inside your path environment variable, as this is where the system stores your
common executable files. These files are also known as binary files, as opposed to
source files, hence the "bin" directory name.

So what the shell will do is that it will check in each of those directories for the
existence of the command that you have typed. If it finds a file that matches the
name and you are allowed to execute it, then the shell will request that the kernel
load that programme into memory, and execute it; in other words, instantiate it as a
running process.

Once the command execution is completed, it will return control back to the shell.

If the shell is not able to find a matching command to execute, in other words it not a
shortcut, it's not an internal command and it cannot find an external programme in
the path that you have provided, then it will give you an error message.

The advantage of internal commands is that they are less expensive for the kernel to
execute, and so consume fewer system resources (CPU time and memory). The
advantage of external commands is that they are able to be far more flexible.

For this reason, internal commands are usually often used, simple tasks; whereas
external commands are often large applications.

The Shell Environment

The Shell Environment 57

There are several environment variables that influence the way that the shell
operates and that can be used by commands that the shell executes.

These variables are set up for you during the boot-up of the system and during your
log in process, mostly determined by your choice of shell. We discussed the files
used by the bash shell earlier.

One variable that was mentioned before was the search path, this information is held
in a environment variable called PATH.

Under the bash shell you can run the "set" command to list the current shell
environment variables and their associated values. "set" is a shell built-in command.

student@debian:~$
<indexterm><primary>set</primary>

</indexterm>set
BASH=/bin/bash BASH_VERSINFO=([0]="2" [1]="05a" [2]="0" [3]="1"
[4]="release"[5]="i386-pc-Linux-gnu")
BASH_VERSION='2.05a.0(1)-release'
COLUMNS=80
DIRSTACK=()
EUID=1000
GROUP=student
GROUPS=()
HISTFILE=/home/student/.bash_history
HISTFILESIZE=500
HISTSIZE=500
HOME=/home/student
HOST=debian
HOSTNAME=debian
HOSTTYPE=i386-Linux
HUSHLOGIN=FALSE
HZ=100 IFS=$' \t\n'
LINES=30
LOGNAME=student
MACHTYPE=i386
MAIL=/var/mail/student
MAILCHECK=60
OPTERR=1
OPTIND=1
OSTYPE=Linux
PATH=/usr/local/bin:/usr/bin:/bin:/usr/bin/X11:/usr/games
PIPESTATUS=([0]="0")
PPID=225
PS1='\u@\h:\w\$ '
PS2='> ' PS4='+ '
PWD=/home/student
SHELL=/bin/bash
SHELLOPTS=braceexpand:hashall:histexpand:
monitor:history:interactive-comments:emacs
SHLVL=5
TERM=Linux
UID=1000
USER=student

58 Essentials

VENDOR=intel
_=passwd
student@debian:~$ _

Setting A New Shell Variable Or Resetting An Existing
Variable

Remember that these variables control your entire environment and as you will see
they are pretty easy to change so if you are going to change one or part of your
environment then please think it through to avoid problematic consequences.

If you wish to assign a value to an environment variable, the Syntax is:

student@debian:~$ VAR=value

Here, "VAR" is the variable name, and "value" is what we are storing inside of it.

Note that there is no space before or after the equal sign. The space would be
assumed to be either part of the variable name or to be part of the value that you are
assigning to the variable.

Exporting a variable value

Setting a variable using the Syntax above will cause the variable to only be available
to the current shell instance. Usually, you want the variable to be propagated to any
commands that you execute from the shell. To do this, you need to "export" the
variable.

student@debian:~$ VAR=value
student@debian:~$ export VAR

You can also combine this into a single command:

student@debian:~$ export VAR=value

Let's have a look at an example of re-setting a variable and then exporting the value:

For this example we are going to use our login prompt variable called PS1, see the
"set" command above.

59

student@debian:~$ PS1="newprompt $ "
newprompt $ _

Enclose this in quotation marks to protect the spaces.

Now open a new shell and check for yourself that the prompt returns to the original
prompt:

newprompt $ bash
student@debian:~$

Exit back to the original shell and export your variable PS1.

newprompt $ bash
student@debian:~$
student@debian:~$ exit
newprompt $ export PS1
newprompt $ bash
newprompt $

Now your new prompt has been exported to all subsequent shells.

Please note however that once you logout of this session your prompt will return to
the default in your next log in. If you want to change this permanently change PS1
and export the value into one of your startup files. ($HOME/.bashrc or
$HOME/.bash_profile)

The echo command

A useful command to query the contents of a single variable is the "echo" command.

This command simply displays any arguments that to pass to it on the screen. For
example:

student@debian:~$ echo hello
hello
student@debian:~$

If you don't provide any arguments, then it will simply display a blank line. (This is

60 Essentials

useful for providing spacing inside shell scripts.)

Do you remember that we mentioned that the shell actually interprets the commands
that you give it before it executes them?

For example, in order to display the contents of a variable field as opposed to the
variable name we could precede the variable name with a special character, in this
case a dollar sign ($), and this will display the contents of that variable.

student@debian:~$ VAR=avalue --Set the variable--
student@debian:~$ echo VAR --To test our theory--
VAR --Displays the word not the value stored.--
student@debian:~$ echo $VAR
avalue --Display the contents of the variable--
student@debian:~$ _

Remembering to include the dollar sign ("$") before the variable name is very
important, as illustrated below:

student@debian:~$<indexterm><primary>echo</primary>
</indexterm>echo $PATH

/usr/local/bin:/usr/bin:/bin:/usr/bin/X11:/usr/games
student@debian:~$<indexterm><primary>echo</primary>

</indexterm> echo PATH
PATH

Discussing system variables - TERM and PS1

Two other important bash shell environment variables: 'TERM' specifies the
terminal type.

Depending how you log in to the system, the terminal type will either be "xterm" or
"vt100".

The terminal type determines what the terminal capabilities are, such as can it do
colour, does it have a speaker attached so that it can generate a beep or do you want
the beeps to be visual flashes on the screen.

The terminal type also lets applications know if the terminal can handle certain types
of characters. Very old terminals used to be only able to handle uppercase letters, so
if you set the terminal type to one of those you would only be able to see uppercase
characters on the screen.

Sometimes, being able to set the term environment variable is useful if you are
connecting to a system that doesn't know where you are connecting from and you

61

wish to be able to specify the correct terminal type so that your display is correct.

A good terminal type to try if you're having problems with your terminal is vt100 as
this works on almost all types of terminals.

Another important environment variable is PS1. This is the current prompt for the
shell. The convention is that a C-style shell has a "%" prompt, where a Bourne-style
shell will have a "$" prompt. The root user will have a "#" prompt; this allows you to
easily see when you are a normal user or a user who has much more potentially
destructive power!

Any changes that you make to the shell environment will be lost when
you exit the current login session. If you wish to make the changes more
permanent, you need to add the commands that you wish to run to either
the system-wide /etc/bashrc file (the change would affect all bash users
on the system), or to your own $HOME/.bashrc file (the changes would
affect you only).

Using Shell Commands
Under Unix, and Linux, most commands are abbreviated using 2 to 4 characters;
with the more often used commands being shorter and the less-often used ones being
longer.

"There are so many options to each command in Linux - get an
overview of the command, that it exists at all as a tool for you to
use. Working out how to use each and every nuance can be very
confusing - you will get bogged down in detail instead of gaining a
comprehensive overview.

We are aiming for a lot of knowledge to be given and gained in this
course and getting stuck on command details is not the main goal."

— Simone Demblon

The man pages

All Unix and Unix-like systems come with online documentation. The most
common form are man pages; man being short for "manual".

These pages are, however, not very good for teaching someone who is new to the
system, but are very good as reference material.

They will document all the useful, and sometimes even obscure, switches and

62 Essentials

features of the command line tools that you have at your disposal.

The man pages are divided into several numbered sections:

1 - General Commands
2 - System Calls
3 - Subroutines
4 - Special Files
5 - File Formats
6 - Games
7 - Macros and Conventions
8 - Maintenance Commands
9 - Kernel Interface

You will often see references such as "ls(1)"; this is referring to the page on "ls" in
section 1 of the man pages.

You can use the " man" command to look up a page:

student@debian:~$ <indexterm><primary>man</primary>
</indexterm>man

man Reformatting man(1), please wait...

This will display the man page on the man command.

man(1) man(1)
NAME
man - format and display the on-line manual pages
SYNOPSIS

man [-acdfFhkKtwW] [--path] [-m system] [-p string] [-C config_file]
[-M pathlist] [-P pager] [-S section_list] [section] name ...

DESCRIPTION
man formats and displays the on-line manual pages. If you
specify sec- tion, man only looks in that section of the manual. name is
normally the name of the manual page, which is typically the name of a
command, function, or file. However, if name contains a slash (/) then man
interprets it as a file specification, so that you can do man ./foo.5 or
even man /cd/foo/bar.1.gz. See below for a description of where man looks
for the manual page files. [...] September 2, 1995 man(1)

The "man" command will look for the first page it can find which matches what
you've asked for. If you want to see a page in a specific section, you can specify it
thus:

student@debian:~$<indexterm><primary>man</primary>
</indexterm> man 7 man

63

I recommend looking through the man page of each of the commands that follow,
just to get a feel for what the commands can do, and what their various switches are.

You may have noticed that the man pages are displayed a page at a time - that is due
to the influence of the "less" command that we will do in the next few pages of this
course. This is a good example of the Unix paradigm where small tools are used
together to make more complicated ones.

You can change which "pager" application is used with man(1) and
other utilities by setting the PAGER environment variable in your shell.

You can use the "-k" switch to tell man to search for pages which contain specific
keywords:

student@debian:~$ man -k bash
bash (1) - GNU Bourne-Again SHell
bashbug (1) - report a bug in bash
builtins (1) - bash built-in commands, see bash(1)
rbash (1) - restricted bash, see bash(1)

The "apropos" command is the functional equivalent of "man -k".

Syntax:
man [chapter] <page>
man -k keyword
apropos keyword

EXCERCISE:

Call up and peruse the man page for the "man" command. Now call up the man page
for man, but in the "Macros" section of the manual.

The GNU Info pages

.The GNU Project distributes most of its software together with documentation in
GNU Texinfo format.

This is another place where you should look for manuals and reference material for
software on a Linux system.

You can access these pages by using the " info" command.

You may optionally specify which "info" page you wish to look at as a parameter.
Unlike Linux man page, GNU Info pages allow you to use hyperlinks, much like

64 Essentials

you are used to using in your web browser.

Inside the GNU info reader, you can use the arrow keys to move the cursor, and can
use the <enter> key to select which hyperlink you wish to follow. Other useful keys
are:

• q - quit

• n - next page

• p - previous page

Syntax:
info [page]

EXCERCISE:

Call up the info pages index and peruse its contents. Now call up the info page for
the "bash" command.

Now call up the info page for the bash command, but this time do it directly from the
command line.

the date command

What's the current date and time on the system?

student@debian:~$<indexterm><primary>date</primary>
</indexterm> date

Thu Jan 15 16:05:07 SAST 2004

Syntax:
date

The cal command

Want to see a pretty calendar of the current month?

student@debian:~$ cal January 2004
January 2004

Su Mo Tu We Th Fr Sa
1 2 3

4 5 6 7 8 9 10
11 12 13 14 15 16 17

65

18 19 20 21 22 23 24
25 26 27 28 29 30 31
student@debian:~$ _

Syntax: cal [[month] year]

Exercise:

Now read the man page for the "cal" command. Can you figure out how to make it
display a calendar listing for the entire year?

Try out the command "cal 2004" and see what happens.

the ls command

The "ls" command, short for "list directory contents", displays a list of files and
directories within your current directory.

student@debian:~$ ls dataset
student@debian:~$ one.txt. two.txt

The "ls" command has several switches which modify its behaviour.

The "-l" (long) switch will display additional information about each of the items
that it lists; these include the file permissions, owner, group, size and date of last
modification.

student@debian:~$ ls -l
total 2

drwxr-xr-x 2 student student 4096 Feb 19 03:10 dataset
drwxr-xr-x 2 student student 4096 Feb 19 03:10 dataset2

The "-a" (all) switch causes "ls" to display even hidden files. Under Linux, any file
that begins with a period (.) is considered to be a hidden file. These files are not
displayed in a "ls" listing unless the "-a" switch has been specified

student@debian:~$ ls -a
. .. .bash_history .bash_profile .bashrc dataset dataset 2

These files are often referred to as "dot files", and usually contain application
configuration information particular to the user whose home directory they reside in.

66 Essentials

The reason for hiding them is to free up your workspace from the clutter it creates,
thus allowing you to more easily access your data files.

Syntax:
ls [-la]

Exercise:

Try combining the the flags and see what effect they have.

The pwd command

The "pwd" command, short for "print working directory" will print out the name of
your current directory.

student@debian:~$ pwd
/home/student

if a command is a shell built in command, you may have to look at the
man pages for the shell to find a write-up on the built-in command. (man
bash)

Syntax:
pwd

Exercise:

Is the pwd command a shell built in, or an external command? Trick Question!

The cd command

You can use the "cd" (change directory) command to navigate your way around the
filesystem.

There are two special types of directories.

The "." directory is an alias for your current directory, and the ".." is an alias for the
parent to your current directory.

67

The "cd" command without any arguments will return you to your home directory
from wherever you are.

student@debian:~$ pwd
/home/student
student@debian:~$ cd ..
student@debian:/home$ pwd
/home
student@debian:/home$ cd
student@debian:~$ pwd
/home/student student@debian:~$ _

You can specify the path for "cd" to change into as being either an "absolute" one, or
a "relative" one.

An absolute (full) path begins with a slash ("/"), and indicates the absolute location
of something on the filesystem, by specifying it from the root directory up.

A relative (partial) path does not begin with a slash, and merely indicates a location
off the current branch of the filesystem. In other words, the new directory is being
specified relative to the current one.

Relative path example:

student@debian:~$ cd ..
student@debian:/home$ ls -l
drwxrwxr-x 1 student group 16 student
student@debian:/home$ cd student
student@debian:~$ pwd
/home/student

Absolute path example:

student@debian:~$ pwd
/home/student
student@debian:~$ cd /tmp
student@debian:~$ pwd
/tmp
student@debian:~$ cd /home
student@debian:/home$ cd /home/student
student@debian:~$ pwd
/home/student

As you can see, both perform equivalent operations. However, relative paths are
usually shorter to type

68 Essentials

Question to make you think: Is the special ".." path a relative or an absolute one?
What about the "." path?

A useful "cd" shortcut to learn is to use the dash (-) parameter.

This allows you to quickly change back to your most recent directory.

student@debian:~$ pwd
/home/student
student@debian:~$ cd /usr/local/src --Using an absolute pathname --
student@debian:/usr/local.src$ pwd
/usr/local/src
student@debian:/usr/local.src$ cd -
/home/student
student@debian:~$ pwd
/home/student
student@debian:~$ _

Syntax:
cd [path]

Exercises:

Use the cd, pwd and ls commands to explore the file system a bit.

The cat command

The "cat" command, short for concatenate, is most often used to display the contents
of short text files.

student@debian:~$
<indexterm><primary/>

</indexterm>cat /etc/passwd
root:x:0:0:root:/root:/bin/bash daemon:x:1:1:daemon:/usr/sbin:/bin/sh
bin:x:2:2:bin:/bin:/bin/sh sys:x:3:3:sys:/dev:/bin/sh
sync:x:4:100:sync:/bin:/bin/sync games:x:5:100:games:/usr/games:/bin/sh
man:x:6:100:man:/var/cache/man:/bin/sh lp:x:7:7:lp:/var/spool/lpd:/bin/sh
mail:x:8:8:mail:/var/mail:/bin/sh news:x:9:9:news:/var/spool/news:/bin/sh
uucp:x:10:10:uucp:/var/spool/uucp:/bin/sh proxy:x:13:13:proxy:/bin:/bin/sh
postgres:x:31:32:postgres:/var/lib/postgres:/bin/sh
www-data:x:33:33:www-data:/var/www:/bin/sh
backup:x:34:34:backup:/var/backups:/bin/sh
operator:x:37:37:Operator:/var:/bin/sh
list:x:38:38:SmartList:/var/list:/bin/sh irc:x:39:39:ircd:/var:/bin/sh
gnats:x:41:41:Gnats Bug-Reporting System (admin):/var/lib/gnats:/bin/sh
nobody:x:65534:65534:nobody:/home:/bin/sh guest:x:1000:1000:Debian

69

student:x:1000:1000:Student User,,,:/home/guest:/bin/bash
identd:x:100:65534::/var/run/identd:/bin/false
sshd:x:101:65534::/var/run/sshd:/bin/false

So why is it short for "concatenate"? Because it can output several files all at once:

student@debian:~$ pwd
/home/student
student@debian:~$ ls dataset
one.txt. two.txt
student@debian:~$ cd dataset
student@debian:~/dataset$ ls
one.txt two.txt

student@debian:~/dataset$ cat one.txt
The coldsleep itself was dreamless. Three days ago they had
been getting ready to leave, and now they were here. Little
Jefri complained about missing all the action, but Johanna
Olsndot was glad she'd been asleep; she had known some of
the grownups on the other ship.

-- A Fire Upon the Deep, Vernor Vinge (pg 11)

student@debian:~/dataset$ cat two.txt
An hour's difference either way and Peregrine Wickwrack-
rum's life would have been very different.

-- A Fire Upon the Deep, Vernor Vinge (pg 17)

student@debian:~/dataset$ cat one.txt two.txt
The coldsleep itself was dreamless. Three days ago they had
been getting ready to leave, and now they were here. Little
Jefri complained about missing all the action, but Johanna
Olsndot was glad she'd been asleep; she had known some of
the grownups on the other ship.

-- A Fire Upon the Deep, Vernor Vinge (pg 11)

An hour's difference either way and Peregrine Wickwrack-
rum&apos;s life would have been very different.

-- A Fire Upon the Deep, Vernor Vinge (pg 17)

student@debian:~/dataset$ _

Syntax:
cat [file1 file2 ...]

Exercise:

Now that you know how to navigate your way around the filesystem, and look at the

70 Essentials

contents of files that you might find there, explore a bit more.

The more and less commands

What if you want to view a longer text file? You can use a utility called a pager to do
this. Two of the most common ones available on Linux based operating systems are
"more" and "less".

The "more" command is very simple, and only allows you to page down a line at a
time using the <enter> key, or 24 lines at a time using the <spacebar> key. Hitting
"q" will return you to the shell prompt.

The "less" command is the successor to "more", and has more features. You can use
the arrow keys to navigate your way around the document.

You can also perform a search my pressing the "/" key, followed by the string which
you wish to search for, and finally followed by the "<enter>" key.

To search for the next occurrence of the same string, you can simply press "/"
followed by "<enter>". To search backwards from your current position, you can use
the "?" instead of a "/".

Pressing the "h" key will display the help page for "less", which contains several
more keystrokes which you may find useful.

Syntax:
less [file1 ...]
more [file1 ...]

Now you have almost all the tools at your disposal to read all the documentation that
comes with your Linux distribution!

The ps command

The "ps" command will give your a listing detailing your current "process status",
listing your processes which are currently running on the system on your current
terminal.

student@debian:~$ <indexterm><primary>ps</primary>
</indexterm>ps

PID TTY TIME CMD
2700 pts/1 00:00:00 bash
3034 pts/1 00:00:00 ps

71

Syntax:
ps

Exercise:

1. Is the ps command a shell built-in?

2. How can you tell?

Files and Directories
Files under Linux

Each disk drive in a Unix or Unix-like system can contain one or more file systems.
A file system consists of a number of cylinder groups, which in turn contain inodes
and data blocks.

Each file system has its characteristics described by its "super-block", which in turn
describes the cylinder groups. A copy of the super-block is made in each cylinder
group, to protect against losing it.

A file is uniquely identified by its inode on the filesystem where it resides.

A data block is simply a set block of space on the disk in which the actual contents
of files are stored; often more than one block is used to hold the data for a file.

Inodes
An inode is a data structure which holds information, or metadata, about a file on
that filesystem.

You can use "ls" with the "-i" option to find a file's inode number:

student@debian:~/dataset$ ls -i
6553 one.txt 7427 two.txt

An inode itself contains the following information:

• the device where the inode resides

72 Essentials

• locking information

• the addresses of the file's data blocks on disk (NOT the data blocks themselves)

Let's look at the directory listing below:

student@debian:~/dataset$ cd ..
student@debian:~$ ls -ila
total 8
4944 drwxr-xr-x 4 student student 1024 Feb 19 03:45 .
4943 drwxrwsr-x 3 root staff 1024 Jan 29 22:32 ..
5665 -rw------- 1 student student 658 Feb 19 03:22 .bash_history
4946 -rw-r--r-- 1 student student 509 Jan 25 12:27 .bash_profile
6540 -rw-r--r-- 1 student student 1093 Jan 25 12:27 .bashrc
6540 drwxr-xr-x 2 student student 1024 Feb 19 03:45 dataset
7425 drwxr-xr-x 2 student student 1024 Feb 19 03:45 dataset

The first line displayed is the total number of 512-byte blocks consumed by the files
in the directory displayed.

As you can see from the remaining output, a file has several attributes, or metadata,
associated with it. This data is stored in the inode and is, in field order:

File Mode

This is a ten character string which determines who is allowed access to the file. The
string is composed of a single initial character, which determines the file type and a
permission field.

File types

The following are the list of file types, and their associated character:

• - regular file

• d directory

• b block device

• c character device

• l symbolic link

• s socket link, also called a Unix networking socket

• p first-in first-out (FIFO) buffer, also called a named pipe

73

A regular file is the most common one that you will have to deal with; plain text
files, configuration files, databases, archives, executables and even the kernel are all
regular files.

A directory is a file, which contains zero or more other files names and their
associated inode numbers.

You should only find character and block device files in your "/dev" directory.
These files are used to allow communication between "userland" programs and the
kernel. Character devices transfer data a single character at a time (eg, console,
printer), while block devices transfer data in fixed-size chunks (eg, harddrive).

A symbolic link is a pointer to another file, and is therefore useful for creating
shortcuts or aliases to files and directories.

A socket link file allows for two or more programs to communicate with each other.
A common example of this is the system logging daemon (syslogd), which other
programs communicate with via the "/dev/log" file. The logging deamon reads
information out of the socket file, while other applications send information to it.

student@debian:~$ ls -l /dev/log
srw-rw-rw- 1 root root 0 Feb 25 11:03 /dev/log

A FIFO buffer is a file whose contents are read out in the order that they were
written to the file.

A semaphore file, in Linux programming parlance, is simply a file used for two or
more Linux processes to communicate with each other; also known as Inter-Process
Communication, or IPC for short.

The simplest sort of semaphore is a binary one; in other words, it is either "on" (set
to "1") or "off" (set to "0"). The semaphore file can be read and written to, this is
based on its permissions, by the processes that wish to communicate with each other.

An example might be a database application, which will only make a copy of the
database when the semaphore is set to "off", indicating that the database is not
currently in use.

File Permissions

The 9 characters that follow the file type character are in fact three triplets, which
affect who can do what with the file. The triplets are the permissions which affect:
the file owner, the file group and everyone else.

The three possible permissions are, in order:

74 Essentials

Table 4.2. File Permissions Table

r read access OR - not readable

w write access OR - not writeable

x execute access OR - not executable

The absence of a permission bit is indicated with a dash ("-").

The read and write permissions are self-explanatory for both the regular and
directory files.

If the execute permission is set on a regular file, it means that the file can be
executed; in other words, it's an application or program that may be run on the
system.

If the execute permission is set on a directory, it means that the directory can be
accessed (eg, using the "cd" command).

For more information on file permissions, see the section on "chmod" below.

Number of links

This is the number of links (see hard links below) that currently point to the file;
when this number reaches zero, the filesystem makes the blocks containing the file
contents available for use again. The most common scenario where this occurs is
when the file is deleted.

Owner name

The person who owns the file. This information is stored as a numeric value on the
filesystem, but is then looked up by tools such as "ls" from the /etc/passwd file, or
equivalent file.

Group Name

The group whom owns the file. This information is stored as a numeric value on the
filesystem, but is then looked up by tools such as "ls" from the /etc/group file, or
equivalent information source.

A Unix group may contain none, one or more users, who will then be able to access
the files and directories owned by that group, based on that groups permissions as
discussed above. This is useful for sharing files between two people, as a file can
only have one owner.

75

Number of bytes in the file

The size of the file, given in bytes.

Modification Time

The abbreviated Month Name, Day Of The Month, Hour and Minute the file was
last modified.

If the modification time of the file is more than 6 months in the past or future, then
the year of the last modification is displayed in place of the hour and minute fields.

File Name

The File name is not stored in the inode!

File names under Linux are case-sensitive. They are limited to 255 characters in
length and can contain uppercase, lowercase, numeric characters as well as escape
characters.

Although it's a good idea to keep them generally all in lowercase avoiding use of
escape characters where possible, so that the file names are easier for you to deal
with in the shell.

The filename is held in the directory listing and referenced by the inode number.
Look at the following diagram this should make it clearer.

Figure 4.2. Filesytems, Cylinder, Inodes and Superblock Layouts

76 Essentials

Linux FS Hierarchy
The Linux filesystem is broken up into a hierarchy similar to the one depicted below,
of course you may not see this entire structure if you are working with the simulated
Linux environment:

Figure 4.3. Debian Directory listing

Linux FS Hierarchy 77

The "/" directory is known as the root of the filesystem, or the root directory (not to
be confused with the root user though).

The "/boot" directory contains all the files that Linux requires in order to bootstrap
the system; this is typically just the Linux kernel and its associated driver modules.

The "/dev" directory contains all the device file nodes that the kernel and system
would make use of.

The "/bin", "/sbin" and "/lib" directories contain critical binary (executable) files
which are necessary to boot the system up into a usable state, as well as utilities to
help repair the system should there be a problem.

The "/bin" directory contains user utilities which are fundamental to both single-user
and multi-user environments. The "/sbin" directory contains system utilities.

The "/usr" directory was historically used to store "user" files, but its use has
changed in time and is now used to store files which are used during everyday
running of the machine, but which are not critical to booting the machine up. These
utilities are similarly broken up into "/usr/sbin" for system utilities, and "/usr/bin" for
normal user applications.

The "/etc" directory contains almost all of the system configuration files. This is
probably the most important directory on the system; after an installation the default
system configuration files are the ones that will be modified once you start setting up
the system to suit your requirements.

The "/home" directory contains all the users data files.

78 Essentials

The "/var" directory contains the user files that are continually changing.

The /usr directory contains the static user files.

The filesystem layout is documented in the Debian distribution in the hier(7) man
page.

Exercise:

Read the file system hierarchy man page. Can you find the directory where this
particular man page file itself resides?

Explanation of how to use /var and /usr efficiently:

One of the benefits of having a /var directory which contains all the files that are
changing or which are variable, and having another directory called /usr where the
files are static and they are only read, would be that if you wanted to create an
incredibly secure system you could in fact mount your /usr directory read-only.

This would mean that even while the OS system is up and running, no one, not even
the root user is allowed to modify any files in that directory.

However, because the system needs to be able to have read and write access to
certain files in order to function, the /var partition would serve this purpose
exclusively, allowing you to mount /usr as read-only.

So this means that you will be able to have a fully running machine doing all the
things you would normally do except it will be virtually impossible for anybody to
be able to place any Trojans or any other malicious binaries in your /usr directory.

Another benefit is that you can run diskless or almost diskless clients. Your /usr
directory could for instance be mounted over the network from another machine.
This means that you don't have to sacrifice all the disk space and instead you could
rely on the network to provide your system with the needed binaries. This used to be
very popular 5-10 years ago when disk space was quite a lot more expensive than it
is today.

However thin-client technology, that seems to be making a comeback, could benefit
quite a lot with being able to mount large applications from a remote file system that
has a large amount of space, and the thin client could have no or very little disk
space available. Examples of large applications are Open Office and Mozilla.

Editing Files under Linux

History

Editing Files under Linux 79

The editor we will be using is a text editor called "vim". Back in the days when Unix
was growing up, people didn't even have a visual console to be able to see what was
going on when they were running commands or editing files. They would use
tele-type terminals.

The command that they used to edit files, was ed. ed is a very unfriendly editor, it is
not as interactive as you would be used to using in most modern editors.

The "ed" application would simply give you a prompt and then you would have to
tell ed, which line you want displayed. It would then display that line to you, that
line only - you wouldn't be able to get an overall feel of what the text file looked like
that you were editing.

If you wanted to insert a line, then you would tell ed that you wanted to insert a line
at a particular position and then pipe the line that you wanted to insert and it would
then insert it for you.

If you wanted to remove a word or delete a line, you would have to specify the
location of the word or line respectively.

Obviously this is fine if you know the file or it is very short but if it's a large file or
it's new to you then you're going to spend a long time in order to make any
modifications to it.

Some time after this it became possible to get video display units, or visual consoles,
which had the ability allow users to view more than a single line at a time. Around
this time, "ed" developed into "ex", which was a more powerful version of the
editor, but still limited to working on a single line at a time.

Unfortunately, these consoles were initially very slow, so screen output was still
limited to the bare minimum.

Time progressed, and displays become faster; in fact, fast enough to be able to
display an entire 25 lines without too much effort; and here we enter the era of the
visual editor, also known as "vi".

Vi has 3 modes of operation: visual mode, insert/editing mode and an ex mode
(where you actually access the original command line ed editor).

Those of you who have had to use edlin in DOS before will probably be able to
relate to ex.

Under Linux, there is no vi, there is vi improved, or vim. vim is compatible with vi
in almost all respects and has a vi compatibility mode available to complete the
compatibility in any other respects. However vim expands greatly on the features of
vi and allows you to do extra things such as Syntax highlighting, better integration
with various other software packages. The ability to perform scripting functions on

80 Essentials

your documents, etc.

Using vim

To start up vim, just type "vi", followed by the name of the file you want to edit.

On Debian systems you have the option of having both an open source
version of vi (called nvi) and vim installed at the same time.

Debian will actually call "vim" when you execute the "vi" command if "vim" is
installed, otherwise it will load "nvi".

student@debian:~$ cd dataset/
student@debian:~/dataset$ vi one.txt_

In the example above, we're opening the file "one.txt" for editing.

You may find the keys for vim to be tricky to learn, but, once mastered, they allow
you to edit documents and configuration files with the minimum number of
keystrokes, and with great speed.

Initially, vim will start in "visual mode". Once open the screen will be blank and
probably have tildes running down the left hand side of the page indicating un-used
lines.

Figure 4.4. Empty vi buffer

81

In this mode you can use the "h", "j", "k", and "l" keys to perform your movement
functions.

Figure 4.5. Movement keys in vi

82 Essentials

vim also allows you to use the cursor keys, so if you find the so-called VI movement
keys daunting you can make use of these instead.

To switch to "insert mode", press the "i" key, notice that the letter "i" does not print
on the screen - but now if you start typing your text will be shown on the screen.

This will tell vim that you want to start inserting text at the current cursor position in
the file that you are editing. You can tell when you are in insert mode as vim will
display the word "INSERT" in the bottom left of the screen.

By pressing "i" you will enter insert mode, text will be inserted to the right of the
current position of the cursor. To insert from the beginning of the line and get into
insert mode at the same time, press "I" (shift + "i").

To insert text in the line above the cursor, press "O" (shift + "o"). To insert in the
line below the cursor, press "o" . To append text just after the current position of the
cursor press "a", to append text at the end of the currentl line, press "A" (shift + "a").

The figure below demonstrates how this affects the place where you will insert text.
The first one indicates the position of the cursor, before entering into insert mode in
these examples.

83

Figure 4.6. Different ways of getting into Insert Mode, and how
that effects the place where text is inserted.

When you want to return to visual mode, press the "escape key" (Esc) on the
keyboard. The word INSERT will disappear from the bottom of your screen.

You can delete characters while in visual mode by hitting the "x" key; this will
delete the character currently above the cursor. (A capital "X" will work as a
backspace key does deleting one character and moving backwards to the next
character.)

The shortcut to delete a line is "dd"; hit the "d" twice in quick succession. (You can
use "p" to paste the line afterwards). To delete two lines you would use the
command "2dd".

If you wish to join the line below your current line to the end of the current line use
"J" (that's a capital).

To insert a line below the one you are currently editing, you can press "o"; this will

84 Essentials

also place you in insert mode on the newly created line. (Capital "O" will open a line
above your current line and also put you into INSERT mode.)

To tell vim that you wish to save and exit, press "ZZ" (two capital "Z"'s in quick
succession).

You can enter ex mode, which allows you to work as if you were in the "ex" editor,
by hitting the ":" key when in visual mode. A colon will be printed at the base of the
screen waiting for an ex command. To get back to your text press the escape key
(Esc).

While in "ex" mode try some of the following suggestions:

• To access vim's built in help system, type "help" at the ex prompt (:) and
ENTER.

• You can perform a search an replace in ex mode by using the following Syntax:
%s/search/replace/g

Try the example above in the sample text window, search globally for the
occurrence(s) of "now" and change that to "not".

• You can also save ":w" and quit ":q" or save & quit in one command using ":wq"
from vim while in ex mode. If you do this point remember to re-enter vim
afterwards.

To recap there are three modes of operation:

1. Command mode

Allows positioning and editing commands to perform functions. Entered via
(Esc), from entry mode, or when you return from Last-line mode

2. Entry mode

Allows you to enter text. Enter this mode via typing; A i I o O c C s S or R
from command mode.

3. Last-line mode

Initiated from command mode by entering advanced editing commands like : (a
colon), / (a forward slash), ? (a question mark) and ! (a bang or exclamation
mark).

85

Syntax:
vi <filename>

Exercise

Vim comes with an excellent tutorial session. It takes about 30 minutes to complete,
but covers all the basics that you need to know and is very easy to follow.

To start the vim tutor, type the following:

student@debian:~$ vimtutor

Working with normal data files

Naming conventions (lowercase, etc.)

Linux filesystems are case sensitive, and support the full range of high and low
ASCII characters; this makes it very powerful.

However, humans can only easily deal with a small number of this range of
characters. For this reason, it's a good idea to keep the names of your files all
lowercase, and to avoid spaces, brackets or any other "special" characters.

Important files, like "README" may be named with all capitals, so that they stand
out better in a listing.

The "/" character is special in that it is used to denote a directory structure.

Unlike DOS or Windows, Linux has no strict concept of having file "extensions"
and thus does not use them to determine what sorts of file it is. There is no "ls.exe",
instead it's just "ls".

However, there is nothing to stop you creating a "readme.txt" file with a .txt
extension; Linux just treats the period (".") as part of the filename instead of a
special character. Indeed, you can have multiple periods; for example
"backup.tar.gz".

So, let us go over the rules in a summary:

• Linux is case sensitive.

• We would advise that you use the lower-case alpha characters (a to z) and the
numeric characters 0 to 9 when you name a file.

86 Essentials

• A (.) in front of a filename means that it is a hidden file, whereas a (.) anywhere
else in the filename is treated as a normal character by Linux.

• There are certain characters that will be interpreted by the shell and have a
special function within the shell - do not use these in a filename. Some of these
characters are:

; | < > lefttick " righttick $! % () ^ \ [] & ? #

• Don't use control characters such as ^G (bell) or ^d (interrupt character), the
space bar, the tab or the backspace. These all have special meaning to the shell.

• Observe the rules for the length of your filenames.

Using " file", magic

So how can you tell what sort of file a file is without actually looking inside if it
doesn't have a handy extension?

The file command examines the contents of the file, and then compares it against a
"magic" filter file, which tells the "file" command what sort of patterns would exist
in what sort of file.

This is a powerful command, give it a try:

student@debian:~$ file /bin/ls
/bin/ls: ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV),
dynamically linked (uses shared libs), stripped
student@debian:~$ file dataset
dataset: directory
student@debian:~$ file dataset/one.txt
dataset/one.txt: ASCII English text
student@debian:~$ file /etc/init.d/rc
/etc/init.d/rc: Bourne shell script text executable

Syntax:
file <file>

Exercise:

Use the file command on some of the files in the /dev directory.

File manipulation commands:

Exercise: 87

There are several command line tools available for manipulating files in a Linux
environment:

touch

This command can be used to create an empty file, or update the modification time
of an already existing file.

student@debian:~$ cd dataset/
student@debian:~/dataset$ ls
one.txt two.txt
student@debian:~/dataset$ touch testing
student@debian:~/dataset$ ls
one.txt testing two.txt
student@debian:~/dataset$ _

Syntax:
touch <filename>

Exercise:

Try using touch to update the modification time of an existing file. What command
can you use to check that the time has in fact been changed?

mv, rm, cp

You can use the "mv" (move) command to move a file into another directory, or to
change its name:

student@debian:~/dataset$ ls -i
6553 one.txt 7437 testing 7427 two.txt
student@debian:~/dataset$ mv testing testing.123
student@debian:~/dataset$ ls -i
6553 one.txt 7437 testing.123 7427 two.txt
student@debian:~/dataset$ _

Check the inode of the file above that you have just moved - what do you notice?

You should notice that the inode remains the same, therefore the only thin that has
changed is the filename, which is held in the directory listing. Remember that the
filename is ONLY held in the directory listing and not by the inode.

The mv, cp and rm commands all accept a "-i" switch. This makes the command
"interactive", which means that the command will ask you to confirm an operation if

88 Essentials

it is a potentionally destructive one. For example, if you copy one file over another,
or try to delete a file.

Syntax:
mv [-i] <oldfilename> <newfilename>
mv [-i] <filename> <directory>

You can use the "cp" (copy) command to make a copy of a file - in other words to
make an identical copy of the datablocks but at another address, using a different
inode number:

student@debian:~/dataset$ ls -i
6553 one.txt 7437 testing.123 7427 two.txt
student@debian:~/dataset$ cp testing.123 testing.456
student@debian:~/dataset$ ls -i
6553 one.txt 7437 testing.123 7438 testing.456 7427 two.txt

In the example above using the cp command what happens with the inodes for
testing.123 and test.456 - are they the same?

Syntax:
cp [-i] <file1> <file2>

Exercise:

How would you copy the file testing.456 into your home directory - using partial
pathnames?

Once you've made a copy of the file, check the new file's inode. Is it different to the
original?

What would the inode number be if you had moved the file instead of copying it?

You can delete files with the "rm" (short for remove) command.

student@debian:~/dataset$ ls
one.txt testing.123 two.txt
student@debian:~/dataset$ rm testing.123
student@debian:~/dataset$ ls
one.txt two.txt testing.456
student@debian:~/dataset$

You can use the "-r" flag with "rm" to recursively delete files and directories. Use

Exercise: 89

this option with extreme caution!

Syntax:
rm [-ir] <filename>

Exercise:

Delete the previous "testing.456" file that we created with touch, and then copied
and/or moved into your home directory.

mkdir, rmdir

To create and remove directories, you can use the mkdir (make directory) and rmdir
(remove directory) commands:

student@debian:~/dataset$ ls
one.txt two.txt

student@debian:~/dataset$ mkdir testdir
student@debian:~/dataset$ cd testdir
student@debian:~/dataset/testdir$ ls
student@debian:~/dataset/testdir$ cd ..
student@debian:~/dataset$ rmdir testdir
student@debian:~/dataset$ ls
one.txt two.txt

Exercise:

Create a directory called "test". Now try the following command inside your
"dataset" directory:

cp one.txt test

What happens to test? Does it become overwritten with "one.txt"? Or does
something else happen?

grep

This is a very powerful command and we will only cover the basics here.

The "grep" command will search through a file for a certain pattern, and then display
lines, which contain the matching pattern:

student@debian:~/dataset$ grep "action" one.txt
Jefri complained about missing all the action, but Johanna

90 Essentials

You don't have to put the search pattern in double quotation marks, but it does help
to avoid confusion, especially with more complicated patterns, so it's a good habit to
get into.

You can also use grep on an input stream; see the pipe ("|") section further on in the
course.

The command also has the following flags:

-n displays the line numbers of the lines which match
-v inverts the match, ie, displays non-matching lines
-i makes the match case-insensitive

student@debian:~/dataset$ grep "action" one.txt
Jefri complained about missing all the action, but Johanna

student@debian:~/dataset$ grep -vi "action" one.txt
The coldsleep itself was dreamless. Three days ago they had
been getting ready to leave, and now they were here. Little
Olsndot was glad she&apos;d been asleep; she had known some of
the grownups on the other ship.

-- A Fire Upon the Deep, Vernor Vinge (pg 11)

student@debian:~/dataset$ _

Syntax:
grep [-nvi] <filename1> <filename...>

Exercise:

Practice using the grep command using the switches above. Can you find all the
lines in the file called "two.txt" which contain a the letter "l".

find

The find command is powerful, but is sometimes tricky to get ones head around.

Syntax:
find from-directory [-options matchspec] [and-action]

From-directory:
/ to specify a directory name
. current directory

Exercise: 91

Remember though that you would have to have permissions to look in the
directory(ies) that you specify to search through.

Options and matchspec:

1. name "foo.txt"

This option matches all file names matching the pattern, wildcards such as "*"
and "?" can be used, but then the name should be enclosed in quotes

2. type f, d, c, b, l, s, etc.

Matches all files of a certain type, e.g. f=regular file, d=directory file,
c=character device file, b=block device file, etcetera

3. user username

Matches all files belonging to the specified user

4. group groupname

Matches all the files belonging to a certain group

You could negate an option using the exclamation mark ("!"), but check first on
escaping the meaning of certain characters to the shell (especially the bash shell).

And-action:

1. print

To print the results to the terminal screen; this is the default action.

2. exec command {} \;

If finding a match, then execute the command on that file. The Syntax for this is
important, the curly braces will hold the name of the file that has been found in
order that the command can execute. The semicolon means separate the
commands so if there is more than one match found each will be dealt with.
The backslash escapes the meaning of the semicolon to the shell and keeps it as
a semicolon.

3. ok command {} \;

If finding a match, then ask if it is OK to execute the command on that file. The
Syntax for this is important, the curly braces will hold the name of the file that

92 Essentials

has been found in order that the command can execute. The semicolon means
separate the commands so if there is more than one match found each will be
dealt with. The backslash escapes the meaning of the semicolon to the shell and
keeps it as a semicolon.

student@debian:~$ find . -name "one.txt"
./dataset/one.txt
student@debian:~$ find . -name "one.txt" -ok rm {} \;
< rm/dataset/one.txt > ? n
student@debian:~$ find . -name "one.txt" -exec cat {} \;
The coldsleep itself was dreamless. Three days ago they had
been getting ready to leave, and now they were here. Little
Jefri complained about missing all the action, but Johanna
Olsndot was glad she&apos;d been asleep; she had known some of
the grownups on the other ship.

-- A Fire Upon the Deep, Vernor Vinge (pg 11)

Let's just analyse the second example to see exactly what happens:

• It does find the file, we know that from our first example.

• Now it has to execute a command on that file:

-ok rm {foo.txt};

• Do not remove this file so say NO when it asks Y/N? to removing that file, and
enter.

• If there had been two files with the name found (foo.txt and tmp/foo.txt) then
each would have been put into the same command sequence as follows:

-ok rm {foo.txt}; -ok rm {tmp/foo.txt};

Each time you would have been asked if you wanted to remove the file and each
time you would give your answer Y/N and enter.

student@debian:~$ find dataset -name "*.txt" -exec ls -l {} \;
-rw-r--r-- 1 student student 321 Feb 19 03:10 dataset/one.txt
-rw-r--r-- 1 student student 150 Feb 19 03:45 dataset/two.txt

This command does a long listing on all files in the "dataset" directory which end in

93

".txt"

student@debian:~$ find . \! -name "*.txt"
.
./.bashrc
./.bash_profile
./.bash_history
./dataset
./dataset2
./dataset2/relay01.dat
./dataset2/relay02.dat
./dataset2/relay03.dat

You can also use the "-o" option to cause the options to be logically ordered:

student@debian:~$ find . -name "one.*" -o -name "two.*"
./dataset/one.txt
./dataset/two.txt

As you can see, this finds all files in the current directory which begin in either
"one." OR "two.".

student@debian:~$ find . -name "*.txt" -user student
foo.txt

head and tail

The head and tail commands can be used to inspect the first 10 or the last 10 lines of
a file, respectively. You can specify a "-#" parameter to change the number of lines
that are displayed.

student@debian:~/dataset$ head /etc/passwd
root:x:0:0:root:/root:/bin/bash
daemon:x:1:1:daemon:/usr/sbin:/bin/sh
bin:x:2:2:bin:/bin:/bin/sh
sys:x:3:3:sys:/dev:/bin/sh
sync:x:4:100:sync:/bin:/bin/sync
games:x:5:100:games:/usr/games:/bin/sh
man:x:6:100:man:/var/cache/man:/bin/sh
lp:x:7:7:lp:/var/spool/lpd:/bin/sh
mail:x:8:8:mail:/var/mail:/bin/sh
news:x:9:9:news:/var/spool/news:/bin/sh
student@debian:~/dataset$ head one.txt
The coldsleep itself was dreamless. Three days ago they had
been getting ready to leave, and now they were here. Little
Jefri complained about missing all the action, but Johanna

94 Essentials

Olsndot was glad she&apos;d been asleep; she had known some of
the grownups on the other ship.

-- A Fire Upon the Deep, Vernor Vinge (pg 11)

student@debian:~/dataset$ _

Syntax:
head [-#] <file1> <file#>
tail [-#] <file1> <file#>

Exercise:

Can you head or tail more than one file using a single command? How?

wc

The "wc" or word count command does a word count on a file, and displays the
following information:

lines, words, characters

You can also use the -l, -w and -c switches to limit the command to only displaying
some of these.

student@debian:~/dataset$ wc one.txt
8 57 321 one.txt
student@debian:~/dataset$ wc -l one.txt
8 one.txt
student@debian:~/dataset$ _

Syntax:
wc [-lwc] <file> <file1>
l -- displays lines in file
w -- displays words in file
c -- displays characters in file

Exercise:

Can you run wc on more than one file at once? Can you combine the commands
switches?

gzip, bzip2

Exercise: 95

28See http://www.data-compression.com/lempelziv.html for an explanation on how the Lempel-Ziv
encoding algorithm works, very interesting.

The "gzip" command can be used to reduce the size of a file using adaptive
Lempel-Ziv, while "bzip2" uses the Burrows-Wheeler block sorting text
compression algorithm together with Huffman coding.28

"gzip" is the most popular compression utility on the Linux platform; files
compressed with it end in a ".gz" extension - it tends to give better compression that
"compress".

"bzip2" is more recent, and requires more memory to compress a file, but usually
gives a better compression ratio than "gzip".

student@debian:~/dataset$ ls -l one*
-rw-r--r-- 1 student student 321 Feb 19 03:10 one.txt
student@debian:~/dataset$ gzip one.txt
student@debian:~/dataset$ ls -l one*
-rw-r--r-- 1 student student 247 Feb 19 03:10 one.txt.gz
student@debian:~/dataset$

You'll note that the command automatically renames the file to ".gz" and that the file
size has decreased.

The commands each have a related command, which is the same name, but prefixed
with an "un"- to reverse the process:

student@debian:~/dataset$ ls -l one*
-rw-r--r-- 1 student student 247 Feb 19 03:10 one.txt.gz
student@debian:~/dataset$ gunzip one.txt.gz
student@debian:~/dataset$ ls -l one*
-rw-r--r-- 1 student student 321 Feb 19 03:10 one.txt

Syntax:
gzip <file>
gunzip <file.gz>

Wildcards

A wildcard is a pattern-matching character. It is useful in the following ways:

1. An asterisk (*) will match zero, one or more characters.

2. A question mark will match any single character (?)

96 Essentials

http://www.data-compression.com/lempelziv.html

3. Putting options into square brackets means either-or e.g. [ab] either an "a" or a
"b"

4. To use the square brackets with a dash option means a range e.g. [0-9] a single
character of any of the range 0 through to 9 (0,1,2,3,4,5,6,7,8 or 9)

5. If wanting to select a range within the alphabet e.g. [a-z] would mean a single
character that might match any of the letters in the entire lowercase alphabet.

6. Could use the brackets to specify letters and numbers as follows: [a-e1-5]
would match a single character that is either a letter in the range a to e or
numerical 1 to 5. (a,b,c,d,e,1,2,3,4 or 5)

7. Using a bang at the beginning of the expression in the square brackets would
negate the expression. [!ab] meaning a single character that is not an "a" or a
"b".

8. Another interesting variation would be the following: [1-57] which would mean
any single character in the range of numbers 1 through 5 or the number 7.
(1,2,3,4,5 or 7)

Examples:

Here's how you long list all the files in your "dataset2" directory ending with .txt:

student@debian:~/dataset2$ ls -l *.txt

Here's how you list all the files starting with o and ending with xt:

student@debian:~/dataset2$ ls o*txt
-rw-r--r-- 1 student student 0 feb 19 04:59 org.txt

The following command will copy all files starting with "b" through to "f" and
ending with anything (*) from your dataset2 directory to your previous dataset
directory. The [b-f] option indicates one single digit or character.

student@debian:~/dataset2$ cp [b-f]* /tmp/
student@debian:~/dataset2$

If you have the following files in your directory:

foot

Examples: 97

foo2
foo.txt
filer
file
files
greper
grep202
fast
slower
peanuts100
12.bed
camping.tent

These files are not in your directories, it is a rhetorical question only - question
yourself as to what will happen in each of these examples before just accepting the
answer as a given:

rm file* Which files will be removed?
filer
files
file (an asterisk means zero characters as well)

cp foo* tmp Which files will be copied?
foot
foo2
foo.txt

mv f[a-z]?.*] tmp Which files will be moved?
foo.txt

Starts with a "f" then a single character of lowercase alphabet,any single character
with the "?", then a full-stop, then zero one or more characters.

cp [!ft] tmp
greper
grep202
slower
peanuts100
12.bed
camping.tent

Any file name that does not have an "f" or a "t" in it.

cp [!f][l-z]??[1-5][0-9][1-5] tmp/
grep202

98 Essentials

The filename starts with any single character except an "f", then a single character
between "l" and "z" (l,m,n,o,p,q,r,s,t,u,v,w,x,y or z), then two single characters (any
characters), then a number between 1 and 5, then a number between 0 and 9, the last
character is again a number between 1 and 5.

Exercise:

Ok, now that you've worked out the answers above using just your head, use the
"touch" command to actually create the files, and perform the commands on them.
Do the actual results match those you had worked out?

links

symbolic links versus hard links

Unix filesystems (including BSD's UFS and Linux's ext2fs, ext3fs and XFS) support
file links. Links are used to have one or more copies of a file in many places at once,
without duplicating the actual data of the file for each copy. This is often used to
save space, or to help when moving data from one location in the filesystem to
another.

Each link points to the original copy of the file; the way in which the link points to a
file determines whether the link is a "hard" link or a "soft" link, also known as a
"symbolic" link.

Hard links

Hard links are created with the "ln" command:

student@debian:~/dataset$ ls -li
total 8
1101067 -rw-r--r-- 1 student student 321 Feb 19 03:10 one.txt
1101076 -rw-r--r-- 1 student student 150 Feb 19 03:45 two.txt
student@debian:~/dataset$ ln one.txt chapterone.txt
student@debian:~/dataset$ ls -li
total 12
1101067 -rw-r--r-- 2 student student 321 Feb 19 03:10 chapterone.txt
1101067 -rw-r--r-- 2 student student 321 Feb 19 03:10 one.txt
1101076 -rw-r--r-- 1 student student 150 Feb 19 03:45 two.txt
student@debian:~/dataset$ _

You'll notice that the inode number for both files are the same; this is how hard links
work. The actual contents of the file, its data blocks, have not been duplicated,
merely its directory entry.

You'll see that if you edit one file, the other file's contents are also changed.

Exercise: 99

29You could see this if piping a directory listing that you know has shadow inodes through a hex dump
tool.

Hard links share an inode, and therefore they can only be created on the same
filesystem where the original file exists.

Removing a file, which is a hard link doesn't delete the file it only removes the link.
The file itself is only removed once all the filesystem link entries that point to it are
removed.

Then the inode becomes a shadow inode and is zero-ised in the directory listing. 29

student@debian:~/dataset$ ls -li
total 12
1101067 -rw-r--r-- 2 student student 321 Feb 19 03:10 chapterone.txt
1101067 -rw-r--r-- 2 student student 321 Feb 19 03:10 one.txt
1101076 -rw-r--r-- 1 student student 150 Feb 19 03:45 two.txt
student@debian:~/dataset$ rm one.txt
student@debian:~/dataset$ ls -li
total 8
1101067 -rw-r--r-- 1 student student 321 Feb 19 03:10 chapterone.txt
1101076 -rw-r--r-- 1 student student 150 Feb 19 03:45 two.txt

In the example above, we've deleted the original file, but you can see that the actual
contents are still preserved, as we still have another directory entry for the same
inode number.

Exercise:

Now use "cp" to make a backup copy of "chapterone.txt", and then delete it. Now
use "ls" to check what's changed with the inode numbers. Change "chapterone.txt"
back to "one.txt" when you're finished.

Symbolic Link

A symbolic link is a pointer to another file path; you use "ln" in conjunction with the
"-s" switch to create a symbolic link:

student@debian:~/dataset$ ls -il
total 8
1101067 -rw-r--r-- 1 student student 321 Feb 19 03:10 one.txt
1101076 -rw-r--r-- 1 student student 150 Feb 19 03:45 two.txt
student@debian:~/dataset$ ln -s two.txt chaptertwo.txt
student@debian:~/dataset$ ls -il
total 8
1101075 lrwxrwxrwx 1 student student 7 Feb 19 05:08

chaptertwo.txt -> two.txt
1101067 -rw-r--r-- 1 student student 321 Feb 19 03:10 one.txt

100 Essentials

1101076 -rw-r--r-- 1 student student 150 Feb 19 03:45 two.txt

Symbolic links can traverse different filesystems, and so are often useful when
shuffling data off a full disk onto a new one, while still preserving the directory path
to the original file.

You'll notice that a symbolic link is given it's own inode number, unlike hard links,
which share another filename's inode number.

An example of when you'd use this in real life: you have a big database in
"/home/database", and you want to move it onto a partition mounted on "/scratch"
which has a lot more free space. The problem is that the database software has been
configured to use "/home/database" to access its files.

What you can do is stop the database, move the "database" directory out of "/home"
and into "/scratch", and then set a symbolic link called "database" in "/home" to
point to the real "database" directory in "/scratch".

Now when you restart your database, it will still be able to find its files where it
expects them!

File permissions/security
We learnt about file mode permissions earlier. Now we're going to look at some of
the tools that can be used to manipulate them.

As a reminder the permissions field was the 9 digits after the file type field. In a long
listing of your files above the permission mode was set be default system wide and
user wide. This is set up for you by a parameter called umask which we will discuss
later on.

Let us look at the permission values and see what they mean on files and directory
files - this is a revision section. Although the permissions have obvious effects for
regular files, directories and their associated permissions can sometimes be
confusing.

A directory for which you are allowed "read" access can have its contents listed by
you. Using, say, "ls".

However, you are only allowed to change into ("cd") a directory for which you have
the "execute" permission, also called the "directory search bit".

If we breakdown the permissions field for a regular file as follows:

File permissions/security 101

Table 4.3. File Permissions example 1

File type Owner Group Other/public or
everyone else on
the system

- rwx rwx rwx

This would mean that the file is a regular file and that anyone using the system can
access the file read it, write and change it and execute it as a program (if relevant as
not all regular files are programs.)

Again:

Table 4.4. File Permissions example 2

File type Owner Group Other/public or
everyone else on
the system

- rw- r-- ---

This would mean that the file is a regular file and the owner can read and write to the
file, the group can only read the file and anyone else on the system has no
permissions on that file at all.

Now with a directory file:

Table 4.5. File Permissions example 3

File type Owner Group Other/public or
everyone else on
the system

d rwx r-x r-x

Here the owner of the directory file can list the contents of the directory, change
(edit and save) files within the directory or make new files, remove files, they can
also cd into the directory or perform a find command that can search that directory
with no permission errors.

The group and general public can list the contents of the directory and cd into the

102 Essentials

directory but cannot change (edit and save), remove, or write a new file into that
directory.

Something that you should maybe beware of is that you may be getting permission
errors on a directory, you have checked that directory and you have full permissions.
Look again at the parent directory you probably do not have permissions on that
directory and that will stop you doing what you want or need to do even in the child
directory.

chmod
You can use this command to change the mode of the file;

Syntax:
chmod mode file-name(s)

Octal mode:

The octal format is supposedly a more difficult method (some find it easier than the
symbolic method), but it is the way in which the modes are actually stored by the
operating system, and is also the mode more widely used in documentation and in
script files, and so is useful to know.

Each permission bit a number associated with it:

r = 4 w = 2 x = 1

These numbers are then added together to form the set of modes that you want, for
example if you want "rw-" permissions set then:

r + w = rw 4 + 2 = 6

There is a grouping of three sets of permissions and the octal method expresses all
three fields (owner, group and public). Thus, a mode of "660" means that the user,
and group, have "rw" access, and everyone else has no access (-rw-rw----).

The first digit ("6") is the mode, which applies to the user (rw-), the second digit
("6") applies to the group (rw-) and the third digit ("0") applies to everyone else (---).

student@debian:~/dataset$ ls -l
one.txt -rw-r--r-- 1 student student 321 Feb 19 03:10 one.txt
student@debian:~/dataset$ chmod 660 one.txt
student@debian:~/dataset$ ls -l one.txt
-rw-rw---- 1 student student 321 Feb 19 03:10 one.txt

chmod 103

Symbolic mode:

You must use one character out of each column to form a triple, with no spaces
between the three characters.

Syntax:
chmod permission-mode filename

Table 4.6. Symbolic File Permission switches

Owners Add, Remove or Set Permission

u owner permissions + adds the permission r read

g group permissions - removes the permission w write

o other or world
permissions

= sets the permission x execute

a all of the above

You can use a comma (",") to separate operands, but don't use any spaces!

student@debian:~$ ls -l
total 8
drwxr-xr-x 2 student student 1024 Feb 19 05:08 dataset
drwxr-xr-x 2 student student 1024 Feb 19 05:01 dataset2
student@debian:~$ chmod ug=rw,o= dataset2
student@debian:~$ ls -l
total 8
drwxr-xr-x 2 student student 1024 Feb 19 05:08 dataset
drw-rw---- 2 student student 1024 Feb 19 05:01 dataset2
student@debian:~$ chmod u=rx,g-w,o+r dataset
student@debian:~$ ls -l
total 8
dr-xr-xr-x 2 student student 1024 Feb 19 05:08 dataset
drw-rw---- 2 student student 1024 Feb 19 05:01 dataset2
student@debian:~$ chmod a+rx,u=w dataset
student@debian:~$ ls -l
total 8
d-w-r-xr-x 2 student student 4096 Feb 19 05:08 dataset
drw-rw---- 2 student student 4096 Feb 19 05:01 dataset2
student@debian:~$ cd dataset
bash: cd: dataset: Permission denied
student@debian:~$ cd dataset2
bash: cd: dataset2: Permission denied

You cannot change into either of the directories because the owner (student) does
not have "execute" or "search bit" access to either of them.

104 Essentials

student@debian:~$ chmod u+x dataset*
student@debian:~$ ls -l
total 8
d-wxr-xr-x 2 student student 4096 Feb 19 05:08 dataset
drwxrw---- 2 student student 4096 Feb 19 05:01 dataset2
student@debian:~$ cd dataset
student@debian:~/dataset$ ls
ls: .: Permission denied
student@debian:~/dataset$ cd ..

Now we've given ourselves back search bit access, but we still don't have read
access to "dataset", which means that while we can "cd" into it, we cannot get a
listing of its contents!

Exercise:

Can you still "cat" files inside dataset, even though you only have "x" and not "r"?

Correct the permissions on the directories to what they should be.

chown and chgrp
Only the root user may use the "chown" command; we will cover this command in
detail in the System Administration section.

You can change both the owner and the group by using the following Syntax:

Syntax:
chown user:group <file>

This changes the user and group associated with the file.

A normal user may change the group to which a file belongs, provided that they are
a member of that group and also own the file, by using the chgrp command.

umask
The umask determines what the default permissions will be on a file that is created,
either system-wide or user based if specified in the home directory log in files. When
using the bash shell, this is a builtin command.

It understands octal and symbolic representations of permissions.

To see what the current umask is, just type "umask":

student@debian:~$ umask
0022

Exercise: 105

student@debian:~$ umask -S
u=rwx,g=rx,o=rx

As you can see, the octal values for the umask are not the same as those for chmod.

In the umask above (0022), the first "0" we will not explain right now - suffice it to
say that this relates to setting an additional permission bit (SUID, SGID or Sticky
Bit).

In umask the permission mode is calculated by subtracting from a full permission set
of read write and execute permission bits as follows: (r + w + x = 4 + 2 + 1 = 7)

A value of zero (0) in the umask means then full permissions (7 - 0 = 7).

A value of 2 in the umask means read (4) and execute (1) permissions (7 - 2 = 5).

To change the current umask:

student@debian:~$ touch file1
student@debian:~$ ls -l file1
-rw-r--r-- 1 student student 0 Feb 19 02:39 file1
student@debian:~$ umask u=rwx,g=rx,o= (OR umask 0027)
student@debian:~$ touch file2
student@debian:~$ ls -l
-rw-r----- 1 student student 0 Feb 19 02:39 file2

You'll notice that umask is clever enough to only apply the +x (execute) bit to
directories, and not regular files as above. Regular files will not be executable by
default.

student@debian:~$ mkdir dir1
student@debian:~$ ls -l file1 dir1
drwxr-x--- 2 student student 512 Jan 14 02:40 dir1
-rw-r--r-- 1 student student 0 Jan 14 02:39 file1

File Redirection, Named and un-named
pipes

In the Linux shell, each process has three file handles (also called file descriptors, or
fd's for short) associated with it.

• Standard input, or stdin -- numbered as file descriptor "0". This is where the
process receives its input from; this is usually the keyboard.

106 Essentials

• Standard output, or stdout -- numbered as file descriptor "1". This is where the
process sends its output to; this is usually the console or terminal screen.

• Standard error, or stderr -- numbered as file descriptor "2". This is where the
process sends its error messages; this is also usually the console or terminal
screen.

Figure 4.7. stdin, stdout, stderr

You can tell the Linux shell to change any or all of these on a per-command basis,
by using pipes ("|") and redirections ("<" and ">").

These features are useful if you want, for example to get the output of a command
into a file for later perusal, or if you want to string multiple commands together in
order to achieve the desired result.

Remember, Linux is made up of lots of small building blocks that can be put
together in order to make something more complicated; the pipes and redirections
are what you can use to help join the blocks together.

stdin
The standard input is usually taken from what you type in at the keyboard. However
we could take the output from a file.

We would use the less than sign (<) to redirect input.

command 0< filename or command < filename

stdout
If we want to store the output of a command in a file we would use standard output

stdin 107

and redirect it. Normally by default the output goes to the screen. . If the file doesn't
already exist, it will be created.

We use the greater than sign (>) to redirect standard output.

command 1> filename or command > filename

stderr
It is important to think of output from a command and errors produced by a
command as separate actions. We might want to store the output of a command in a
file and leave the errors to display on the screen. Or we might want to store the error
messages in a file.

command 2> filename

In this instance the number "2" preceding the redirection sign is not optional.

student@debian:~$ touch file1 file2

Make sure that file1 and file2 exist in your directory, file3 should not exist.

student@debian:~$ ls file1 file2
file1 file2

Standard output goes to the screen and there are no error messages.

student@debian:~$ ls file1 file2 file 3
file3 ls: file3: No such file or directory file1 file2

File3 does not exist so a message is printed to standard error. The directory listing
for file1 and file2 is printed to standard output.

student@debian:~$ ls file1 file2
file3 > stdout.txt ls: file3: No such file or directory

Redirect standard output to a file called stdout.txt, standard error is kept as the
default display to the screen.

108 Essentials

student@debian:~$ ls file1 file2
file3 2> stderr.txt file1 file2

Redirect standard error to a file called stderr.txt, standard output is left to the default
setting of the screen.

student@debian:~$ ls file1 file2
file3 > stdout.txt 2> stderr.txt student@debian:~$ _

Redirect standard output and standard error and nothing is displayed on the screen.

student@debian:~$ cat stdout.txt
file1 file2 student@debian:~$ cat stderr.txt ls:
file3: No such file or directory

Check what is in each relevant file.

For standard input we can demonstrate how it works however at this stage of your
course it is harder to describe a really useful example.

A simple example would be:

student@debian:~$ cat <
stdout.txt file1 file2

When we know a little more we could do something more sophisticated, like run a
program that normally requires input from a user at a keyboard - but run it after
hours in the background with no user present to press the relevant key strokes.

Appending to a file
You can use a double redirection (">>") to append to a file instead of overwriting it.
If the file doesn't already exist, it will be created.

student@debian:~$ ls output.txt
ls: output.txt: No such file or directory

Make sure that the file does not already exist in your home directory.

student@debian:~$ echo "test" >> output.txt
student@debian:~$ cat output.txt
test

student@debian:~$ echo "test again" >> output.txt
student@debian:~$ cat output.txt

Appending to a file 109

test test again

The above two steps will prove that the append function actually does create the file
if it does not already exist.

Piping
A pipe ("|") directs the stdout from one process to the stdin of another:

Figure 4.8. piping from one process to another

Note that stderr is _not_ passed through the pipe!

student@debian:~$ ls dataset2 | grep "txt"
fight.txt
flight.txt
org.txt
singularity.txt
three.txt
vernor.txt
vinge.txt
student@debian:~$ _

This type of pipe is called an "un-named pipe". The un-named pipe uses a temporary
buffer type of action to pass the stream of data through.

You can also use "named pipes". We briefly mentioned them earlier in this course;
they are also known as FIFO buffers.

Named pipes work exactly the same as unnamed pipes, where the stdout from one
process is fed into the stdin for another process.

You can use the mkfifo command to create such a file, and you can then simply use
the redirection symbols to put data in, or take it out. As the name implies, the data is
read First In, First Out.

student@debian:~$ mkfifo foop

110 Essentials

student@debian:~$ ls -l foop
prw-r--r-- 1 mwest mwest 0 Jan 13 23:26 foop|
student@debian:~$ echo "testing the named pipe" > foop

Ok, now go and open up another terminal. You can do this by holding down the Alt
key and pressing F2. Once there, log in, and then type the following:

student@debian:~$ cat < foop
testing the named pipe
student@debian:~$ _

If you switch back to your original terminal window (press alt-f1), you should see
that your shell has now returned back to your prompt. This is because your previous
"cat" command took the contents out of the pipe, and so your original "echo"
command was able to complete.

Check if the file called "foop" still exists as a named pipe in your directory.

Experiment with this one a bit, it can be quite fun!

Other commands
There are a few other commands, which you may find useful:

clear - clears the screen

uname - this displays information about the system the most common switch used
with this is "-a"

student@debian:~$ uname -a
Linux debian 2.2.20 #1 Sat Apr 20 12:45:19 EST 2002 i586 unknown

Linux debian 2.2.20 #1 Sat Apr 20 12:45:19 EST 2002 i586 unknown
1. 2. 3. 4. 5. 6.

1. the OS name, could be Linux, FreeBSD, Solaris, etc.

2. the hostname

3. the version of the kernel currently running

4. how many times this kernel had been compiled

Other commands 111

5. the compilation date

6. the architecture it was compiled for

last - indicates last logins of users, and on which terminals, it reports on a file called
wtmp.

student@debian:~$ last
student pts/0 192.168.0.5 Thu Feb 19 03:01 still logged in
root pts/0 192.168.0.5 Thu Feb 19 02:58 - 03:00 (00:02)
student tty2 Thu Feb 19 02:56 still logged in
reboot system boot 2.2.20-idepci Thu Feb 19 02:56 (02:15)
student pts/0 192.168.0.5 Thu Jan 29 22:32 - 23:57 (01:24)
root pts/0 192.168.0.5 Thu Jan 29 22:32 - 22:32 (00:00)
student tty1 192.168.0.5 Thu Jan 29 22:30 - 22:32 (00:02)
root tty1 Thu Jan 29 22:15 - down (01:42)
reboot system boot 2.2.20-idepci Thu Jan 29 22:14 (01:42)
root tty1 Sun Jan 25 12:28 - 12:29 (00:01)
reboot system boot 2.2.20-idepci Sun Jan 25 14:26 (4+09:31)

wtmp begins Sun Jan 25 14:26:47 2004

tty - tells you which terminal you are currently on

student@debian:~$ tty
/dev/tty1

112 Essentials

Appendix A. Linux Professional
Institute (LPI) Certification

Introduction
Visit this site [http://www.lpi.org/en/lpic.html]for the latest information. The
following section will describe the certification methods and pre-requisite
knowledge that is needed to gain the LPI certifications.

Junior Level Administration (LPIC1)
Status: Available since January 2000, latest revision done in March 2003
Pre-requisite Knowledge: none Requirements: Pass exam 101 and 102 Job
description of a person with this certification:

• Work at the Linux command line

• Perform easy maintenance tasks: help out users, add users to a larger system,
backup & restore, shutdown & reboot

• Install and configure a workstation (including X) and connect it to a LAN, or a
stand-alone PC via modem to the Internet.

LPI exam 101 Details

Topic 101 Hardware and Architecture

Table A.1. LPI exam 101: Hardware and Architecture

Weight Title Description Key Files, terms
and utillities

1 Fundamental BIOS
Settings

Candidates should
be able to configure
fundamental system
hardware by
making the correct
settings in the
system BIOS. This
objective includes a

/proc/ioports
/proc/interrupts
/proc/dma /proc/pci

http://www.lpi.org/en/lpic.html

proper
understanding of
BIOS configuration
issues such as the
use of LBA on IDE
hard disks larger
than 1024
cylinders, enabling
or disabling
integrated
peripherals, as well
as configuring
systems with (or
without) external
peripherals such as
keyboards. It also
includes the correct
setting for IRQ,
DMA and I/O
addresses for all
BIOS administrated
ports and settings
for error handling.

1 Configure Modem
and Sound cards

Ensure devices
meet compatibility
requirements
(particularly that
the modem is NOT
a win-modem),
verify that both the
modem and sound
card are using
unique and correct
IRQ's, I/O, and
DMA addresses, if
the sound card is
PnP install and run
sndconfig and
isapnp, configure
modem for
outbound dial-up,
configure modem
for outbound PPP |
SLIP | CSLIP
connection, set
serial port for 115.2
Kbps

Not applicable

114 Linux Professional Institute (LPI)
Certification

1 Setup SCSI Devices Candidates should
be able to configure
SCSI devices using
the SCSI BIOS as
well as the
necessary Linux
tools. They also
should be able to
differentiate
between the various
types of SCSI. This
objective includes
manipulating the
SCSI BIOS to
detect used and
available SCSI IDs
and setting the
correct ID number
for different devices
especially the boot
device. It also
includes managing
the settings in the
computer's BIOS to
determine the
desired boot
sequence if both
SCSI and IDE
drives are used.

SCSI ID /proc/scsi/
scsi_info

1 Configure
Communication
Devices

Candidates should
be able to install
and configure
different internal
and external
communication
devices like
modems, ISDN
adapters, and DSL
switches. This
objective includes
verification of
compatibility
requirements
(especially
important if that
modem is a
winmodem),

/proc/dma
/proc/interrupts
/proc/ioports
setserial(8)

115

necessary hardware
settings for internal
devices (IRQs,
DMAs, I/O ports),
and loading and
configuring suitable
device drivers. It
also includes
communication
device and interface
configuration
requirements, such
as the right serial
port for 115.2
Kbps, and the
correct modem
settings for
outbound PPP
connection(s).

1 Configure USB
devices

Candidates should
be able to activate
USB support, use
and configure
different USB
devices. This
objective includes
the correct selection
of the USB chipset
and the
corresponding
module. It also
includes the
knowledge of the
basic architecture of
the layer model of
USB as well as the
different modules
used in the different
layers. Key files,
terms, and utilities
include:

lspci(8) usb-uhci.o
usb-ohci.o
/etc/usbmgr/
usbmodules
/etc/hotplug

3 Setup different PC
expansion cards

Candidates should
be able to configure
various cards for
the various
expansion slots.
They should know

/proc/dma
/proc/interrupts
/proc/ioports
/proc/pci
pnpdump(8)
isapnp(8) lspci(8)

116 Linux Professional Institute (LPI)
Certification

the differences
between ISA and
PCI cards with
respect to
configuration
issues. This
objective includes
the correct settings
of IRQs, DMAs and
I/O Ports of the
cards, especially to
avoid conflicts
between devices. It
also includes using
isapnp if the card is
an ISA PnP device.

Topic 102 Linux Installation & Package Management

Table A.2. LPI exam 101: Linux Installation & Package
Management

Weight Title Description Key Files, terms
and utillities

1 Install a boot
manager

Candidate should
be able to select,
install, and
configure a boot
manager. This
objective includes
providing
alternative boot
locations and
backup boot options
(for example, using
a boot floppy).

/etc/lilo.conf
/boot/grub/grub.conf
lilo grub-install
MBR superblock
first stage boot
loader

3 Manage shared
libraries

Candidates should
be able to
determine the
shared libraries that
executable
programs depend
on and install them
when necessary.

ldd ldconfig
/etc/ld.so.conf
LD_LIBRARY_PATH

Topic 102 Linux Installation &
Package Management

117

Candidates should
be able to state
where system
libraries are kept.

5 Design hard disk
layout

Candidates should
be able to design a
disk partitioning
scheme for a Linux
system. This
objective includes
allocating
filesystems or swap
space to separate
partitions or disks,
and tailoring the
design to the
intended use of the
system. It also
includes placing
/boot on a partition
that conforms with
the BIOS'
requirements for
booting.

/ (root) filesystem
/var filesystem
/home filesystem
swap space mount
points partitions
cylinder 1024

5 Make and install
programs from
source

Candidates should
be able to build and
install an
executable program
from source. This
objective includes
being able to
unpack a file of
sources. Candidates
should be able to
make simple
customizations to
the Makefile, for
example changing
paths or adding
extra include
directories.

gunzip gzip bzip2
tar configure make

8 Use Debian
package
management

Candidates should
be able to perform
package
management skills
using the Debian

unpack configure
/etc/dpkg/dpkg.cfg
/var/lib/dpkg/*
/etc/apt/apt.conf
/etc/apt/sources.list

118 Linux Professional Institute (LPI)
Certification

package manager.
This objective
includes being able
to use
command-line and
interactive tools to
install, upgrade, or
uninstall packages,
as well as find
packages
containing specific
files or software
(such packages
might or might not
be installed). This
objective also
includes being able
to obtain package
information like
version, content,
dependencies,
package integrity
and installation
status (whether or
not the package is
installed).

dpkg dselect
dpkg-reconfigure
apt-get alien

8 Use Red Hat
Package Manager
(RPM)

Candidates should
be able to perform
package
management under
Linux distributions
that use RPMs for
package
distribution. This
objective includes
being able to install,
re-install, upgrade,
and remove
packages, as well as
obtain status and
version information
on packages. This
objective also
includes obtaining
package
information such as
version, status,

/etc/rpmrc
/usr/lib/rpm/* rpm
grep

119

dependencies,
integrity, and
signatures.
Candidates should
be able to
determine what
files a package
provides, as well as
find which package
a specific file
comes from.

Topic 103: GNU & Unix Commands

Table A.3. LPI exam 101: GNU & Unix Commands

Weight Title Description Key Files, terms
and utillities

1 Perform basic file
editing operations
using vi

Candidates should
be able to edit text
files using vi. This
objective includes
vi navigation, basic
vi nodes, inserting,
editing, deleting,
copying, and
finding text.

vi /, ? h,j,k,l G, H, L
i, c, d, dd, p, o, a
ZZ, :w!, :q!, :e! :!

3 Modify process
execution priorities

Candidates should
should be able to
manage process
execution priorities.
Tasks include
running a program
with higher or
lower priority,
determining the
priority of a process
and changing the
priority of a
running process.

nice ps renice top

3 Perform basic file
management

Candidates should
be able to use the
basic Unix
commands to copy,

cp find mkdir mv ls
rm rmdir touch file
globbing

120 Linux Professional Institute (LPI)
Certification

move, and remove
files and
directories. Tasks
include advanced
file management
operations such as
copying multiple
files recursively,
removing
directories
recursively, and
moving files that
meet a wildcard
pattern. This
includes using
simple and
advanced wildcard
specifications to
refer to files, as
well as using find to
locate and act on
files based on type,
size, or time.

3 Search text files
using regular
expressions

Candidates should
be able to
manipulate files and
text data using
regular expressions.
This objective
includes creating
simple regular
expressions
containing several
notational elements.
It also includes
using regular
expression tools to
perform searches
through a
filesystem or file
content.

grep regexp sed

5 Work on the
command line

Candidates should
be able to Interact
with shells and
commands using
the command line.
This includes

. bash echo env
exec export man
pwd set unset
~/.bash_history
~/.profile

121

typing valid
commands and
command
sequences,
defining,
referencing and
exporting
environment
variables, using
command history
and editing
facilities, invoking
commands in the
path and outside the
path, using
command
substitution,
applying commands
recursively through
a directory tree and
using man to find
out about
commands.

5 Use streams, pipes,
and redirects

Candidates should
be able to redirect
streams and connect
them in order to
efficiently process
textual data. Tasks
include redirecting
standard input,
standard output,
and standard error,
piping the output of
one command to
the input of another
command, using the
output of one
command as
arguments to
another command
and sending output
to both stdout and a
file.

tee xargs < << >> | '
'

5 Create, monitor,
and kill processes

Candidates should
be able to manage
processes. This

& bg fg jobs kill
nohup ps top

122 Linux Professional Institute (LPI)
Certification

includes knowing
how to run jobs in
the foreground and
background, bring a
job from the
background to the
foreground and vice
versa, start a
process that will
run without being
connected to a
terminal and signal
a program to
continue running
after logout. Tasks
also include
monitoring active
processes, selecting
and sorting
processes for
display, sending
signals to
processes, killing
processes and
identifying and
killing X
applications that did
not terminate after
the X session
closed.

6 Process text streams
using filters

Candidates should
should be able to
apply filters to text
streams. Tasks
include sending text
files and output
streams through
text utility filters to
modify the output,
and using standard
Unix commands
found in the GNU
textutils package.

cat cut expand fmt
head join nl od
paste pr sed sort
split tac tail tr
unexpand uniq wc

Topic 104: Devices, Linux Filesystems, Filesystem

Topic 104: Devices, Linux
Filesystems, Filesystem

123

Hierarchy Standard

Table A.4. LPI exam 101: Devices, Linux Filesystems, Filesystem
Hierarchy Standard

Weight Title Description Key Files, terms
and utillities

1 Create and change
hard and symbolic
links

Candidates should
be able to create
and manage hard
and symbolic links
to a file. This
objective includes
the ability to create
and identify links,
copy files through
links, and use
linked files to
support system
administration
tasks.

ln

1 Manage file
ownership

Candidates should
be able to control
user and group
ownership of files.
This objective
includes the ability
to change the user
and group owner of
a file as well as the
default group owner
for new files. Key
files, terms, and
utilities include:

chmod chown
chgrp

3 Create partitions
and filesystems

Candidates should
be able to configure
disk partitions and
then create
filesystems on
media such as hard
disks. This
objective includes
using various mkfs
commands to set up
partitions to various

fdisk mkfs

124 Linux Professional Institute (LPI)
Certification

filesystems,
including ext2,
ext3, reiserfs, vfat,
and xfs.

3 Maintain the
integrity of
filesystems

Candidates should
be able to verify the
integrity of
filesystems,
monitor free space
and inodes, and
repair simple
filesystem
problems. This
objective includes
the commands
required to maintain
a standard
filesystem, as well
as the extra data
associated with a
journaling
filesystem.

du df fsck e2fsck
mke2fs debugfs
dumpe2fs tune2fs

2 Control mounting
and unmounting
filesystems

Candidates should
be able to configure
the mounting of a
filesystem. This
objective includes
the ability to
manually mount
and unmount
filesystems,
configure
filesystem
mounting on
bootup, and
configure user
mountable
removeable
filesystems such as
tape drives,
floppies, and CDs.

/etc/fstab mount
umount

3 Managing disk
quota

Candidates should
be able to manage
disk quotas for
users. This
objective includes

quota edquota
repquota

Hierarchy Standard

setting up a disk
quota for a
filesystem, editing,
checking, and
generating user
quota reports.
quotaon

5 Use file
permissions to
control access to
files

Candidates should
be able to control
file access through
permissions. This
objective includes
access permissions
on regular and
special files as well
as directories. Also
included are access
modes such as suid,
sgid, and the sticky
bit, the use of the
group field to grant
file access to
workgroups, the
immutable flag, and
the default file
creation mode.

chmod umask chattr

5 Find system files
and place files in
the correct location

Candidates should
be thouroughly
familiar with the
Filesystem
Hierarchy Standard,
including typical
file locations and
directory
classifications. This
objective includes
the ability to find
files and commands
on a Linux system.

find locate slocate
updatedb whereis
which
/etc/updatedb.conf

Topic 110: The X Window System

Table A.5. LPI exam 101: The X Window System

126 Linux Professional Institute (LPI)
Certification

Weight Title Description Key Files, terms
and utillities

3 Setup a display
manager

Candidate should
be able setup and
customize a Display
manager. This
objective includes
turning the display
manager on or off
and changing the
display manager
greeting. This
objective includes
changing default
bitplanes for the
display manager. It
also includes
configuring display
managers for use by
X-stations. This
objective covers the
display managers
XDM (X Display
Manger), GDM
(Gnome Display
Manager) and
KDM (KDE
Display Manager).

/etc/inittab
/etc/X11/xdm/*
/etc/X11/kdm/*
/etc/X11/gdm/*

5 Install & Configure
XFree86

Candidate should
be able to configure
and install X and an
X font server. This
objective includes
verifying that the
video card and
monitor are
supported by an X
server, as well as
customizing and
tuning X for the
videocard and
monitor. It also
includes installing
an X font server,
installing fonts, and
configuring X to
use the font server

XF86Setup
xf86config xvidtune
/etc/X11/XF86Config
.Xresources

127

(may require a
manual edit of
/etc/X11/XF86Config
in the "Files"
section).

5 Install & Customize
a Window Manager
Environment

Candidate should
be able to
customize a
system-wide
desktop
environment and/or
window manager,
to demonstrate an
understanding of
customization
procedures for
window manager
menus and/or
desktop panel
menus. This
objective includes
selecting and
configuring the
desired x-terminal
(xterm, rxvt, aterm
etc.), verifying and
resolving library
dependency issues
for X applications,
exporting X-display
to a client
workstation

.xinitrc .Xdefaults
xhost DISPLAY
environment
variable

LPI Exam 102

Topic 105: Kernel

Table A.6. LPI Exam 102: The kernel

Weight Title Description Key Files, terms
and utillities

3 Reconfigure, build,
and install a custom
kernel and kernel

Candidates should
be able to
customize, build,

/usr/src/Linux/*
/usr/src/Linux/.config
/lib/modules/kernel-version/*

128 Linux Professional Institute (LPI)
Certification

modules and install a kernel
and kernel loadable
modules from
source This
objective includes
customizing the
current kernel
configuration,
building a new
kernel, and building
kernel modules as
appropriate. It also
includes installing
the new kernel as
well as any
modules, and
ensuring that the
boot manager can
locate the new
kernel and
associated files
(generally located
under /boot, see
objective 1.102.2
for more details
about boot manager
configuration).

/boot/* make make
targets: config,
menuconfig,
xconfig, oldconfig,
modules, install,
modules_install,
depmod

4 Manage/Query
kernel and kernel
modules at runtime

Candidates should
be able to manage
and/or query a
kernel and kernel
loadable modules.
This objective
includes using
command-line
utilities to get
information about
the currently
running kernel and
kernel modules. It
also includes
manually loading
and unloading
modules as
appropriate. It also
includes being able

/lib/modules/kernel-version/modules.dep
/etc/modules.conf
&
/etc/conf.modules
depmod insmod
lsmod rmmod
modinfo modprobe
uname

129

to determine when
modules can be
unloaded and what
parameters a
module accepts.
Candidates should
be able to configure
the system to load
modules by names
other than their file
name.

Topic 106: Boot, Initialization, Shutdown and Runlevels

Table A.7. LPI Exam 102: Boot, Initialization, Shutdown and
Runlevels

Weight Title Description Key Files, terms
and utillities

3 Boot the system Candidates should
be able to guide the
system through the
booting process.
This includes
giving commands
to the boot loader
and giving options
to the kernel at boot
time, and checking
the events in the log
files.

/var/log/messages
/etc/conf.modules
or
/etc/modules.conf
dmesg LILO
GRUB

3 Change runlevels
and shutdown or
reboot system

Candidates should
be able to manage
the runlevel of the
system. This
objective includes
changing to single
user mode,
shutdown or
rebooting the
system. Candidates
should be able to
alert users before
switching runlevel,

/etc/inittab
shutdown init

130 Linux Professional Institute (LPI)
Certification

and properly
terminate processes.
This objective also
includes setting the
default runlevel.

Topic 107: Printing

Table A.8. LPI Exam 102: Printing

Weight Title Description Key Files, terms
and utillities

1 Manage printers
and print queues

Candidates should
be able to manage
print queues and
user print jobs. This
objective includes
monitoring print
server and user
print queues and
troubleshooting
general printing
problems.

/etc/printcap lpc lpq
lprm lp

1 Print files Candidates should
be able to manage
print queues and
manipulate print
jobs. This objective
includes adding and
removing jobs from
configured printer
queues and
converting text files
to postscript for
printing.

lpr lpq mpage

1 Install and
configure local and
remote printers

Candidate should
be able to install a
printer daemon,
install and
configure a print
filter (e.g.: apsfilter,
magicfilter). This
objective includes
making local and

/etc/printcap
/etc/apsfilter/*
/var/lib/apsfilter/*/
/etc/magicfilter/*/
/var/spool/lpd/*/ lpd

Topic 107: Printing 131

remote printers
accessible for a
Linux system,
including
postscript,
non-postscript, and
Samba printers.

Topic 108: Documentation

Table A.9. LPI Exam 102: Documentation

Weight Title Description Key Files, terms
and utillities

3 Find Linux
documentation on
the Internet

Candidates should
be able to find and
use Linux
documentation.
This objective
includes using
Linux
documentation at
sources such as the
Linux
Documentation
Project (LDP),
vendor and
third-party
websites,
newsgroups,
newsgroup
archives, and
mailing lists.

Not applicable

4 Use and manage
local system
documentation

Candidates should
be able to use and
administer the man
facility and the
material in
/usr/share/doc/.
This objective
includes finding
relevant man pages,
searching man page
sections, finding

MANPATH man
apropos whatis

132 Linux Professional Institute (LPI)
Certification

commands and man
pages related to
them, and
configuring access
to man sources and
the man system. It
also includes using
system
documentation
stored in
/usr/share/doc/ and
determining what
documentation to
keep in
/usr/share/doc/.

1 Notify users on
system-related
issues

Candidates should
be able to notify the
users about current
issues related to the
system. This
objective includes
automating the
communication
process, e.g.
through logon
messages.

/etc/issue
/etc/issue.net
/etc/motd

Topic 109:

Table A.10. LPI Exam 102: Shells, Scripting, Programming and
Compiling

Weight Title Description Key Files, terms
and utillities

3 Customize or write
simple scripts

Candidate should
be able to
customize existing
scripts, or write
simple new (ba)sh
scripts. This
objective includes
using standard sh
Syntax (loops,

while for test
chmod

Topic 109: 133

tests), using
command
substitution, testing
command return
values, testing of
file status, and
conditional mailing
to the superuser.
This objective also
includes making
sure the correct
interpreter is called
on the first (#!) line
of scripts. This
objective also
includes managing
location,
ownership,
execution and
suid-rights of
scripts.

5 Customize and use
the shell
environment

Candidate should
be able to
customize shell
environments to
meet users' needs.
This objective
includes setting
environment
variables (e.g.
PATH) at login or
when spawning a
new shell. It also
includes writing
bash functions for
frequently used
sequences of
commands.

~/.bash_profile
~/.bash_login
~/.profile ~/.bashrc
~/.bash_logout
~/.inputrc function
(Bash built-in
command) export
env set (Bash
built-in command)
unset (Bash built-in
command)

Topic 111: Administrative Tasks

Table A.11. LPI Exam 102: Administrative Tasks

Weight Title Description Key Files, terms
and utillities

134 Linux Professional Institute (LPI)
Certification

3 Configure and use
system log files to
meet administrative
and security needs

Candidate should
be able to configure
system logs. This
objective includes
managing the type
and level of
information logged,
manually scanning
log files for notable
activity, monitoring
log files, arranging
for automatic
rotation and
archiving of logs
and tracking down
problems noted in
logs.

/etc/syslog.conf
/var/log/* logrotate
tail -f

3 Tune the user
environment and
system environment
variables

Candidate should
be able to modify
global and user
profiles. This
includes setting
environment
variables,
maintaining skel
directories for new
user accounts and
setting command
search path with the
proper directory.

/etc/profile /etc/skel
env export set unset

4 Manage users and
group accounts and
related system files

Candidate should
be able to add,
remove, suspend
and change user
accounts. Tasks
include to add and
remove groups, to
change user/group
info in
passwd/group
databases. The
objective also
includes creating
special purpose and
limited accounts.
Key files, terms,
and utilities

/etc/passwd
/etc/shadow
/etc/group
/etc/gshadow chage
gpasswd groupadd
groupdel groupmod
grpconv grpunconv
passwd pwconv
pwunconv useradd
userdel usermod

135

include:

4 Automate system
administration tasks
by scheduling jobs
to run in the future

Candidate should
be able to use cron
or anacron to run
jobs at regular
intervals and to use
at to run jobs at a
specific time. Task
include managing
cron and at jobs and
configuring user
access to cron and
at services.

/etc/anacrontab
/etc/at.deny
/etc/at.allow
/etc/crontab
/etc/cron.allow
/etc/cron.deny
/var/spool/cron/* at
atq atrm crontab

4 Maintain an
effective data
backup strategy

Candidate should
be able to plan a
backup strategy and
backup filesystems
automatically to
various media.
Tasks include
dumping a raw
device to a file or
vice versa,
performing partial
and manual
backups, verifying
the integrity of
backup files and
partially or fully
restoring backups.

cpio dd dump
restore tar

4 Maintain system
time

Candidate should
be able to properly
maintain the system
time and
synchronize the
clock over NTP.
Tasks include
setting the system
date and time,
setting the BIOS
clock to the correct
time in UTC,
configuring the
correct timezone for
the system and
configuring the

/usr/share/zoneinfo
/etc/timezone
/etc/localtime
/etc/ntp.conf
/etc/ntp.drift date
hwclock ntpd
ntpdate

136 Linux Professional Institute (LPI)
Certification

system to correct
clock drift to match
NTP clock.

Topic 112:

Table A.12. LPI Exam 102: Networking Fundamentals

Weight Title Description Key Files, terms
and utillities

3 Configure Linux as
a PPP client

Candidates should
understand the
basics of the PPP
protocol and be
able to configure
and use PPP for
outbound
connections. This
objective includes
the definition of the
chat sequence to
connect (given a
login example) and
the setup
commands to be
run automatically
when a PPP
connection is made.
It also includes
initialisation and
termination of a
PPP connection,
with a modem,
ISDN or ADSL and
setting PPP to
automatically
reconnect if
disconnected.

/etc/ppp/options.*
/etc/ppp/peers/*
/etc/wvdial.conf
/etc/ppp/ip-up
/etc/ppp/ip-down
wvdial pppd

4 Fundamentals of
TCP/IP

Candidates should
demonstrate a
proper
understanding of
network
fundamentals. This

/etc/services ftp
telnet host ping dig
traceroute whois

Topic 112: 137

objective includes
the understanding
of IP-addresses,
network masks and
what they mean
(i.e. determine a
network and
broadcast address
for a host based on
its subnet mask in
"dotted quad" or
abbreviated
notation or
determine the
network address,
broadcast address
and netmask when
given an IP-address
and number of bits).
It also covers the
understanding of
the network classes
and classless
subnets (CIDR) and
the reserved
addresses for
private network
use. It includes the
understanding of
the function and
application of a
default route. It also
includes the
understanding of
basic internet
protocols (IP,
ICMP, TCP, UDP)
and the more
common TCP and
UDP ports (20, 21,
23, 25, 53, 80, 110,
119, 139, 143, 161).

7 TCP/IP
configuration and
troubleshooting

Candidates should
be able to view,
change and verify
configuration
settings and

/etc/HOSTNAME
or /etc/hostname
/etc/hosts
/etc/networks
/etc/host.conf

138 Linux Professional Institute (LPI)
Certification

operational status
for various network
interfaces. This
objective includes
manual and
automatic
configuration of
interfaces and
routing tables. This
especially means to
add, start, stop,
restart, delete or
reconfigure
network interfaces.
It also means to
change, view or
configure the
routing table and to
correct an
improperly set
default route
manually.
Candidates should
be able to configure
Linux as a DHCP
client and a TCP/IP
host and to debug
problems associated
with the network
configuration.

/etc/resolv.conf
/etc/nsswitch.conf
ifconfig route
dhcpcd, dhcpclient,
pump host
hostname
(domainname,
dnsdomainname)
netstat ping
traceroute tcpdump
the network scripts
run during system
initialization.

Topic 113: Networking Services

Table A.13. LPI Exam 102: Networking Services

Weight Title Description Key Files, terms
and utillities

4 Setup and configure
basic DNS services

Candidate should
be able to configure
hostname lookups
and troubleshoot
problems with local
caching-only name
server. Requires an
understanding of

/etc/hosts
/etc/resolv.conf
/etc/nsswitch.conf
/etc/named.boot
(v.4) or
/etc/named.conf
(v.8) named

Topic 113: Networking Services 139

the domain
registration and
DNS translation
process. Requires
understanding key
differences in
configuration files
for bind 4 and bind
8.

4 Configure and
manage inetd,
xinetd, and related
services

Candidates should
be able to configure
which services are
available through
inetd, use
tcpwrappers to
allow or deny
services on a
host-by-host basis,
manually start, stop,
and restart internet
services, configure
basic network
services including
telnet and ftp. Set a
service to run as
another user instead
of the default in
inetd.conf.

/etc/inetd.conf
/etc/hosts.allow
/etc/hosts.deny
/etc/services
/etc/xinetd.conf
/etc/xinetd.log

4 Operate and
perform basic
configuration of
sendmail

Candidate should
be able to modify
simple parameters
in sendmail
configuration files
(including the
"Smart Host"
parameter, if
necessary), create
mail aliases,
manage the mail
queue, start and
stop sendmail,
configure mail
forwarding and
perform basic
troubleshooting of
sendmail. The
objective includes

/etc/aliases or
/etc/mail/aliases
/etc/mail/*
~/.forward mailq
sendmail
newaliases

140 Linux Professional Institute (LPI)
Certification

checking for and
closing open relay
on the mailserver. It
does not include
advanced custom
configuration of
Sendmail. Key
files, terms, and
utilities include:

4 Operate and
perform basic
configuration of
Apache

Candidates should
be able to modify
simple parameters
in Apache
configuration files,
start, stop, and
restart httpd,
arrange for
automatic restarting
of httpd upon boot.
Does not include
advanced custom
configuration of
Apache.

httpd.conf apachectl
httpd

4 Properly manage
the NFS, smb, and
nmb daemons

Candidate should
know how to mount
remote filesystems
using NFS,
configure NFS for
exporting local
filesystems, start,
stop, and restart the
NFS server. Install
and configure
Samba using the
included GUI tools
or direct edit of the
/etc/smb.conf file
(Note: this
deliberately
excludes advanced
NT domain issues
but includes simple
sharing of home
directories and
printers, as well as
correctly setting the
nmbd as a WINS

/etc/exports
/etc/fstab
/etc/smb.conf
mount umount

141

client).

4 Set up secure shell
(OpenSSH)

The candidate
should be able to
obtain and
configure
OpenSSH. This
objective includes
basic OpenSSH
installation and
troubleshooting, as
well as configuring
sshd to start at
system boot..

/etc/hosts.allow
/etc/hosts.deny
/etc/nologin
/etc/ssh/sshd_config
/etc/ssh_known_hosts
/etc/sshrc sshd
ssh-keygen

Topic 114: Security

Table A.14. LPI Exam 102: Security

Weight Title Description Key Files, terms
and utillities

3 Setup host security Candidate should
know how to set up
a basic level of host
security. Tasks
include syslog
configuration,
shadowed
passwords, set up of
a mail alias for
root's mail and
turning of all
network services
not in use.

/etc/inetd.conf or
/etc/inet.d/*
/etc/nologin
/etc/passwd
/etc/shadow
/etc/syslog.conf

4 Perform security
administration tasks

Candidates should
know how to
review system
configuration to
ensure host security
in accordance with
local security
policies. This
objective includes
how to configure
TCP wrappers, find

/proc/net/ip_fwchains
/proc/net/ip_fwnames
/proc/net/ip_masquerade
find ipchains
passwd socket
iptables

142 Linux Professional Institute (LPI)
Certification

files with
SUID/SGID bit set,
verify packages, set
or change user
passwords and
password aging
information, update
binaries as
recommended by
CERT,
BUGTRAQ, and/or
distribution's
security alerts.
Includes basic
knowledge of
ipchains and
iptables.

1 Setup user level
security

Candidate should
be able to configure
user level security.
Tasks include limits
on user logins,
processes, and
memory usage. Key
files, terms, and
utilities include:

quota usermod

Intermediate Level Administration (LPIC2)
Status: Available now; published November 29, 2001 Pre-Requisites: Completion of
LPIC Level 1 Requirements: Passing Exams 201 and 202 # Overview of Tasks: To
pass Level 2 someone should be able to

• Administer a small to medium-sized site

• Plan, implement, maintain, keep consistent, secure, and troubleshoot a small
mixed (MS, Linux) network, including a:

• LAN server (samba)

• Internet Gateway (firewall, proxy, mail, news)

• InternetServer(webserver,FTPserver)

Intermediate Level
Administration (LPIC2)

143

• Supervise assistants

• Advise management on automation and purchases

LPI Exam 201

Topic 201: Linux Kernel

Table A.15. LPI Exam 201: The Linux Kernel

Weight Title Description Key Files, terms
and utillities

1 Kernel Components Candidates should
be able to utilize
kernel components
that are necessary
to specific
hardware, hardware
drivers, system
resources and
requirements. This
objective includes
implementing
different types of
kernel images,
identifying stable
and development
kernels and patches,
as well as using
kernel modules.

zImage bzImage

1 Compiling a kernel Candidates should
be able to properly
compile a kernel to
include or disable
specific features of
the Linux kernel as
necessary. This
objective includes
compiling and
recompiling the
Linux kernel as
needed,
implementing

/usr/src/Linux/
/etc/lilo.conf make
options (config,
xconfig,
menuconfig,
oldconfig, mrproper
zImage, bzImage,
modules,
modules_install)
mkinitrd (both Red
Hat and Debian
based) make

144 Linux Professional Institute (LPI)
Certification

updates and noting
changes in a new
kernel, creating a
system initrd
image, and
installing new
kernels.

1 Customizing a
kernel

Candidates should
be able to
customize a kernel
for specific system
requirements by
patching,
compiling, and
editing
configuration files
as required. This
objective includes
being able to assess
requirements for a
kernel compile
versus a kernel
patch as well as
build and configure
kernel modules.

/usr/src/Linux
/proc/sys/kernel/
/etc/conf.modules,
/etc/modules.conf
patch make
modprobe insmod,
lsmod kerneld
kmod

2 Patching a kernel Candidates should
be able to properly
patch a kernel for
various purposes
including to
implement kernel
updates, to
implement bug
fixes, and to add
support for new
hardware. This
objective also
includes being able
to properly remove
kernel patches from
existing production
kernels.

Makefile patch gzip
bzip

Topic 202:

Topic 202: 145

Table A.16. LPI Exam 201: System Startup

Weight Title Description Key Files, terms
and utillities

2 Customizing
system startup and
boot processes

Candidates should
be able to edit
appropriate system
startup scripts to
customize standard
system run levels
and boot processes.
This objective
includes interacting
with run levels and
creating custom
initrd images as
needed.

/etc/init.d/
/etc/inittab /etc/rc.d/
mkinitrd (both Red
Hat and Debian
scripts)

3 System recovery Candidates should
be able to properly
manipulate a Linux
system during both
the boot process
and during recovery
mode. This
objective includes
using both the init
utility and init=
kernel options.

inittab LILO init
mount fsck

Topic 203: Filesystem

Table A.17. LPI Exam 201: Filesystem

Weight Title Description Key Files, terms
and utillities

3 Operating the Linux
filesystem
Candidates should
be able to properly
configure and
navigate the
standard Linux

/etc/fstab /etc/mtab
/proc/mounts mount
and umount sync
swapon swapoff

146 Linux Professional Institute (LPI)
Certification

filesystem. This
objective includes
configuring and
mounting various
filesystem types.
Also included, is
manipulating
filesystems to
adjust for disk
space requirements
or device additions.

3 Creating and
configuring
filesystem options

Candidates should
be able to configure
automount
filesystems. This
objective includes
configuring
automount for
network and device
filesystems. Also
included is creating
non ext2
filesystems for
devices such as
CD-ROMs.

/etc/auto.master
/etc/auto.[dir]
mkisofs dd mke2fs

4 Maintaining a
Linux filesystem

Candidates should
be able to properly
maintain a Linux
filesystem using
system utilities.
This objective
includes
manipulating a
standard ext2
filesystem.

fsck (fsck.ext2)
badblocks mke2fs
dumpe2fs
debuge2fs tune2fs

Topic 204: Hardware

Table A.18. LPI Exam 201: Hardware

Weight Title Description Key Files, terms
and utillities

1 Configuring
PCMCIA devices

Candidates should
be able to configure

/etc/pcmcia/ *.opts
cardctl cardmgr

Topic 204: Hardware 147

a Linux installation
to include PCMCIA
support. This
objective includes
configuring
PCMCIA devices,
such as ethernet
adapters, to
autodetect when
inserted.

2 Configuring RAID Candidates should
be able to configure
and implement
software RAID.
This objective
includes using
mkraid tools and
configuring RAID
0, 1, and 5.

/etc/raidtab mkraid

2 Software and kernel
configuration

Candidates should
be able to configure
kernel options to
support various
hardware devices
including UDMA66
drives and IDE CD
burners. This
objective includes
using LVM
(Logical Volume
Manager) to
manage hard disk
drives and
particitions as well
as software tools to
interact with hard
disk settings.

/proc/interrupts
hdparm tune2fs
sysctl

3 Adding new
hardware

Candidates should
be able to configure
internal and
external devices for
a system including
new hard disks,
dumb terminal
devices, serial UPS
devices, multi-port

/proc/bus/usb
XFree86 modprobe
lsmod lsdev lspci
setserial usbview

148 Linux Professional Institute (LPI)
Certification

serial cards, and
LCD panels.

Topic 209: File and Service Sharing

Table A.19. LPI Exam 201: File and Service Sharing

Weight Title Description Key Files, terms
and utillities

5 Configuring a
samba server

The candidate
should be able to
set up a Samba
server for various
clients. This
objective includes
setting up a login
script for Samba
clients, and setting
up an nmbd WINS
server. Also
included is to
change the
workgroup in which
a server
participates, define
a shared directory
in smb.conf, define
a shared printer in
smb.conf, use
nmblookup to test
WINS server
functionality, and
use the smbmount
command to mount
an SMB share on a
Linux client.

smbd, nmbd
smbstatus,
smbtestparm,
smbpasswd,
nmblookup
smb.conf, lmhosts

3 Configuring an
NFS server

The candidate
should be able to
create an exports
file and specify
filesystems to be
exported. This
objective includes
editing exports file

/etc/exports
exportfs
showmount nfsstat

Topic 209: File and Service
Sharing

149

entries to restrict
access to certain
hosts, subnets or
netgroups. Also
included is to
specify mount
options in the
exports file,
configure user ID
mapping, mount an
NFS filesystem on
a client, using
mount options to
specify soft or hard
and background
retries, signal
handling, locking,
and block size. The
candidate should
also be able to
configure
tcpwrappers to
further secure NFS.

Topic 211: System Maintenance

Table A.20. LPI Exam 201: System Maintenance

Weight Title Description Key Files, terms
and utillities

1 System logging The candidate
should be able to
configure syslogd
to act as a central
network log server.
This objective also
includes
configuring syslogd
to send log output
to a central log
server, logging
remote connections,
and using grep and
other text utils to
automate log

syslog.conf
/etc/hosts sysklogd

150 Linux Professional Institute (LPI)
Certification

analysis.

1 Packaging software The candidate
should be able to
build a package.
This objective
includes building
(or rebuilding) both
RPM and DEB
packaged software.

/debian/rules SPEC
file format rpm

2 Backup operations The candidate
should be able to
create an offsite
backup storage
plan.

Not applicable

Topic 213: System Customization and Automation

Table A.21. LPI Exam 201: System Customization and
Automation

Weight Title Description Key Files, terms
and utillities

3 Automating tasks
using scripts

The candidate
should be able to
write simple Perl
scripts that make
use of modules
where appropriate,
use the Perl taint
mode to secure
data, and install
Perl modules from
CPAN. This
objective includes
using sed and awk
in scripts, and using
scripts to check for
process execution
and generate alerts
by email or pager if
a process dies.
Candidates should
be able to write and
schedule automatic

perl -MCPAN -e
shell bash, awk, sed
crontab at

Topic 213: System
Customization and Automation

151

execution of scripts
to parse logs for
alerts and email
them to
administrators,
synchronize files
across machines
using rsync,
monitor files for
changes and
generate email
alerts, and write a
script that notifies
administrators
when specified
users log in or out.

Topic 214: Troubleshooting

Table A.22. LPI Exam 201: Troubleshooting

Weight Title Description Key Files, terms
and utillities

1 Creating recovery
disks

Candidate should
be able to: create
both a standard
bootdisk for system
entrance, and a
recovery disk for
system repair.

/etc/fstab
/etc/inittab Any
standard editor
Familiarity with the
location and
contents of the LDP
Bootdisk-HOWTO
/usr/sbin/rdev
/bin/cat /bin/mount
(includes -o loop
switch) /sbin/lilo
/bin/dd
/sbin/mke2fs
/usr/sbin/chroot

1 Identifying boot
stages

Candidate should
be able to:
determine, from
bootup text, the 4
stages of boot
sequence and
distinguish between

boot loader start
and hand off to
kernel kernel
loading hardware
initializiation and
setup daemon
initialization and

152 Linux Professional Institute (LPI)
Certification

each. setup

1 Troubleshooting
LILO

Candidate should
be able to:
determine specific
stage failures and
corrective
techniques.

/boot/boot.b Know
meaning of L, LI,
LIL, LILO, and
scrolling 010101
errrors Know the
different LILO
install locations,
MBR, /dev/fd0, or
primary/extended
partition. Know
significance of
/boot/boot.### files

1 General
troubleshooting

A candidate should
be able to recognize
and identify boot
loader and kernel
specific stages and
utilize kernel boot
messages to
diagnose kernel
errors. This
objective includes
being able to
identify and correct
common hardware
issues, and be able
to determine if the
problem is
hardware or
software.

/proc filesystem
Various system and
daemon log files in
/var/log/ /, /boot,
and /lib/modules
screen output
during bootup
kernel syslog
entries in system
logs (if entry is able
to be gained)
location of system
kernel and
attending modules
dmesg /sbin/lspci
/usr/bin/lsdev
/sbin/lsmod
/sbin/modprobe
/sbin/insmod
/bin/uname strace
strings ltrace lsof

1 Troubleshooting
system resources

A candidate should
be able to identify,
diagnose and repair
local system
environment.

/etc/profile &&
/etc/profile.d/
/etc/init.d/ /etc/rc.*
/etc/sysctl.conf
/etc/bashrc
/etc/ld.so.conf (or
other appropriate
global shell
configuration files)
Core system
variables Any
standard editor

153

/bin/ln /bin/rm
/sbin/ldconfig
/sbin/sysctl

1 Troubleshooting
environment
configurations

A candidate should
be able to identify
common local
system and user
environment
configuration issues
and common repair
techniques.

/etc/inittab
/etc/rc.local
/etc/rc.boot
/var/spool/cron/crontabs/
/etc/`shell_name`.conf
/etc/login.defs
/etc/syslog.conf
/etc/passwd
/etc/shadow
/etc/group
/etc/profile
/sbin/init
/usr/sbin/cron
/usr/bin/crontab

Exam 202

Topic XXX: Networking

Table A.23. Exam 202: Networking

Weight Title Description Key Files, terms
and utillities

5 Basic networking
configuration

Modified:
2001-August-24
Maintainer: Kara
Pritchard Weight: 5
Description: The
candidate should be
able to configure a
network device to
be able to connect
to a local network
and a wide-area
network. This
objective includes
being able to
communicate
between various
subnets within a
single network,

/sbin/route
/sbin/ifconfig
/sbin/arp
/usr/sbin/arpwatch
/etc/

154 Linux Professional Institute (LPI)
Certification

configure dialup
access using
mgetty, configure
dialup access using
a modem or ISDN,
configure
authentication
protocols such as
PAP and CHAP,
and configure
TCP/IP logging.

3 Advanced Network
Configuration and
Troubleshooting

The candidate
should be able to
configure a network
device to
implement various
network
authentication
schemes. This
objective includes
configuring a
multi-homed
network device,
configuring a
virtual private
network and
resolving
networking and
communication
problems.

/sbin/route
/sbin/route
/sbin/ifconfig
/bin/netstat
/bin/ping /sbin/arp
/usr/sbin/tcpdump
/usr/sbin/lsof
/usr/bin/nc

Topic 206: Mail & News

Table A.24. Exam 202: Mail & news

Weight Title Description Key Files, terms
and utillities

1 Serving news Candidates should
be able to install
and configure news
servers using inn.
This objective
includes
customizing and

innd

Topic 206: Mail & News 155

monitoring served
newsgroups.

1 Configuring
mailing lists

Install and maintain
mailing lists using
majordomo.
Monitor
majordomo
problems by
viewing majordomo
logs.

Majordomo2

3 Managing Mail
Traffic

Candidates shold be
able to implement
client mail
management
software to filter,
sort, and monitor
incoming user mail.
This objective
includes using
software such as
procmail on both
server and client
side.

procmail
.procmailrc

Using Sendmail 4 Candidates should
be able to manage a
Sendmail
configuration
including email
aliases, mail quotas,
and virtual mail
domains. This
objective includes
configuring internal
mail relays and
monitoring SMTP
servers.

/etc/aliases
sendmail.cw
virtusertable
genericstable

Topic 207 DNS

Table A.25. Exam 202: DNS

Weight Title Description Key Files, terms
and utillities

2 Basic BIND 8 The candidate /etc/named.conf

156 Linux Professional Institute (LPI)
Certification

configuration should be able to
configure BIND to
function as a
caching-only DNS
server. This
objective includes
the ability to
convert a BIND 4.9
named.boot file to
the BIND 8.x
named.conf format,
and reload the DNS
by using kill or ndc.
This objective also
includes
configuring logging
and options such as
directoryh location
for zone files.

/usr/sbin/ndc
/usr/sbin/named-bootconf
kill

3 Create and maintain
DNS zones

The candidate
should be able to
create a zone file
for a forward or
reverse zone or root
level server. This
objective includes
setting appropriate
values for the SOA
resource record, NS
records, and MX
records. Also
included is adding
hosts with A
resource records
and CNAME
records as
appropriate, adding
hosts to reverse
zones with PTR
records, and adding
the zone to the
/etc/named.conf file
using the zone
statement with
appropriate type,
file and masters
values. A candidate

contents of
/var/named zone
file Syntax resource
record formats dig
nslookup host

157

should also be able
to delegate a zone
to another DNS
server.

3 Securing a DNS
server

The candidate
should be able to
configure BIND to
run as a non-root
user, and configure
BIND to run in a
chroot jail. This
objective includes
configuring
DNSSEC
statements such as
key and
trusted-keys to
prevent domain
spoofing. Also
included is the
ability to configure
a split DNS
configuration using
the forwarders
statement, and
specifying a
non-standard
version number
string in response to
queries.

SysV init files or
rc.local
/etc/named.conf
/etc/passwd
dnskeygen

Topic 208 Web Services

Table A.26. Exam 202: Web Services

Weight Title Description Key Files, terms
and utillities

2 Implementing a
web server

Candidates should
be able to install
and configure an
Apache web server.
This objective
includes monitoring
Apache load and

access.log .htaccess
httpd.conf
mod_auth htpasswd
htgroup

158 Linux Professional Institute (LPI)
Certification

performance,
restricting client
user access,
configuring
mod_perl and PHP
support, and setting
up client user
authentication. Also
included is
configuring Apache
server options such
as maximum
requests, minimum
and maximim
servers, and clients.

2 Maintaining a web
server

Candidates should
be able to configure
Apache to use
virtual hosts for
websites without
dedicated IP
addresses. This
objective also
includes creating an
SSL certification
for Apache and
defining SSL
definitions in
configuration files
using OpenSSL.
Also included is
customizing file
access by
implementing
redirect statements
in Apache's
configuration files.

httpd.conf

2 Implementing a
proxy server

Candidates should
be able to install
and configure a
proxy server using
Squid. This
objective includes
impelementing
access policies,
setting up
authentication, and

squid.conf acl
http_access

159

utilizing memory
usage.

Topic 210 Network Client Management

Table A.27. Exam 202: Network Client Management

Weight Title Description Key Files, terms
and utillities

1 NIS configuration The candidate
should be able to
configure an NIS
server and create
NIS maps for major
configuration files.
This objective
includes
configuring a
system as a NIS
client, setting up an
NIS slave server,
and configuring
ability to search
local files, DNS,
NIS, etc. in
nsswitch.conf.

nisupdate, ypbind,
ypcat, ypmatch,
ypserv, ypswitch,
yppasswd, yppoll,
yppush, ypwhich,
rpcinfo nis.conf,
nsswitch.conf,
ypserv.conf
Contents of
/etc/nis/: netgroup,
nicknames,
securenets Makefile

1 LDAP
configuration

The candidate
should be able to
configure an LDAP
server. This
objective includes
configuring a
directory hierarchy,
adding group, hosts,
services and other
data to the
hierarchy. Also
included is
importing items
from LDIF files and
add items with a
management tool,
as well as adding
users to the

slapd slapd.conf

160 Linux Professional Institute (LPI)
Certification

directory and
change their
passwords.

2 DHCP
configuration

The candidate
should be able to
configure a DHCP
server and set
default options,
create a subnet, and
create a
dynamically-allocated
range. This
objective includes
adding a static host,
setting options for a
single host, and
adding bootp hosts.
Also included is to
configure a DHCP
relay agent, and
reload the DHCP
server after making
changes.

dhcpd.conf
dhcpd.leases

2 PAM authentication The candidate
should be able to
configure PAM to
support
authentication via
traditional
/etc/passwd,
shadow passwords,
NIS, or LDAP.

/etc/pam.d
pam.conf

Topic 212 System Security

Table A.28. Exam 202: System Security

Weight Title Description Key Files, terms
and utillities

1 TCP_wrappers The candidate
should be able to
configure
tcpwrappers to
allow connections

inetd.conf, tcpd
hosts.allow,
hosts.deny xinetd

Topic 212 System Security 161

to specified servers
from only certain
hosts or subnets.

2 Securing FTP
servers

The candidate
should be able to
configure an
anonymous
download FTP
server. This
objective includes
configuring an FTP
server to allow
anonymous
uploads, listing
additional
precautions to be
taken if anonymous
uploads are
permitted,
configuring guest
users and groups
with chroot jail, and
configuring
ftpaccess to deny
access to named
users or groups.

ftpaccess, ftpusers,
ftpgroups
/etc/passwd chroot

2 Configuring a
router

The candidate
should be able to
configure ipchains
and iptables to
perform IP
masquerading, and
state the
significance of
Network Address
Translation and
Private Network
Addresses in
protecting a
network. This
objective includes
configuring port
redirection, listing
filtering rules, and
writing rules that
accept or block
datagrams based

/proc/sys/net/ipv4
/etc/services
ipchains iptables
routed

162 Linux Professional Institute (LPI)
Certification

upon source or
destination
protocol, port and
address. Also
included is saving
and reloading
filtering
configurations,
using settings in
/proc/sys/net/ipv4
to respond to DOS
attacks, using
/proc/sys/net/ipv4/ip_forward
to turn IP
forwarding on and
off, and usingtools
such as PortSentry
to block port scans
and vulnerability
probes.

2 Secure shell
(OpenSSH)

The candidate
should be able to
configure sshd to
allow or deny root
logins, enable or
disable X
forwarding. This
objective includes
generating server
keys, generating a
user's public/private
key pair, adding a
public key to a
user's
authorized_keys
file, and
configuring
ssh-agent for all
users. Candidates
should also be able
to configure port
forwarding to
tunnel an
application protocol
over ssh, configure
ssh to support the
ssh protocol

ssh, sshd
/etc/ssh/sshd_config
~/.ssh/identity.pub
and identity,
~/.ssh/authorized_keys
.shosts, .rhosts

163

versions 1 and 2,
disable non-root
logins during
system
maintenance,
configure trusted
clients for ssh
logins without a
password, and
make multiple
connections from
multiple hosts to
guard against loss
of connection to
remote host
following
configuration
changes.

3 Security tasks The candidate
should be able to
install and
configure kerberos
and perform basic
security auditing of
source code. This
objective includes
arranging to receive
security alerts from
Bugtraq, CERT,
CIAC or other
sources, being able
to test for open mail
relays and
anonymous FTP
servers, installing
and configuring an
intrusion detection
system such as
snort or Tripwire.
Candidates should
also be able to
update the IDS
configuration as
new vulnerabilities
are discovered and
apply security
patches and

Tripwire telnet
nmap

164 Linux Professional Institute (LPI)
Certification

bugfixes.

Topic 214 Network Troubleshooting

Table A.29. Exam 202: Network Troubleshooting

Weight Title Description Key Files, terms
and utillities

1 Troubleshooting
network issues

A candidates should
be able to identify
and correct
common network
setup issues to
include knowledge
of locations for
basic configuration
files and
commands.

/sbin/ifconfig
/sbin/route
/bin/netstat
/etc/network ||
/etc/sysconfig/network-scripts/
system log files
such as
/var/log/syslog &&
/var/log/messages
/bin/ping
/etc/resolv.conf
/etc/hosts
/etc/hosts.allow &&
/etc/hosts.deny
/etc/hostname ||
/etc/HOSTNAME
/sbin/hostname
/usr/sbin/traceroute
/usr/bin/nslookup
/usr/bin/dig
/bin/dmesg host

Topic 214 Network
Troubleshooting

165

166 This page intentionally left blank

Appendix B. Linux kernel version
2.6

The Wonderful World of Linux
The following is a article written by Joseph Pranevich when version 2.6 of the Linux
Kernel was released. It details the new capabilities of the kernel. The material is
used by kind permission of Joseph Pranevich, the latest version of the article can be
found at: http://kniggit.net/wwol26.html. This material is not covered by the creative
Commons License agreement for this manual. To use this material outside the
context of this manual, please contact jpranevich <at> kniggit.net. (Mail address
disguised to avoid web-crawlers looking for email addresses to send spam to)

Joseph Pranevich - jpranevich <at> kniggit.net

Although it seems like only yesterday that we were booting up our first Linux 2.4
systems, time has ticked by and the kernel development team has just released the
2.6 kernel to the public. This document is intended as a general overview of the
features in the new kernel release, with a heavy bias toward i386 Linux. Please also
be aware that some of the "new" features discussed here may have been back-ported
to Linux 2.4 after first appearing in Linux 2.6, either officially or by a distribution
vendor. I have also included information on a handful of cases where a new feature
originated during the maintenance cycle of Linux 2.4, and those will be marked as
appropriate in the text.

At present, this document has been translated into ten languages. Please see the
"Translations" section at the very bottom for more information.

The Story So Far...
The Linux kernel project was started in 1991 by Linus Torvalds as a Minix-like
Operating System for his 386. (Linus had originally wanted to name the project
Freax, but the now-familiar name is the one that stuck.) The first official release of
Linux 1.0 was in March 1994, but it supported only single-processor i386 machines.
Just a year later, Linux 1.2 was released (March 1995) and was the first version with
support for different hardware platforms (specifically: Alpha, Sparc, and Mips), but
still only single-processor models. Linux 2.0 arrived in June of 1996 and also
included support for a number of new architectures, but more importantly brought
Linux into the world of multi-processor machines (SMP). After 2.0, subsequent
major releases have been somewhat slower in coming (Linux 2.2 in January 1999
and 2.4 in January 2001), each revision expanding Linux's support for new hardware
and system types as well as boosting scalability. (Linux 2.4 was also notable in

http://kniggit.net/wwol26.html

being the release that really broke Linux into the desktop space with kernel support
for ISA Plug-and-Play, USB, PC Card support, and other additions.) Linux 2.6,
released 12/17/03, stands not only to build on these features, but also to be another
"major leap" with improved support for both significantly larger systems and
significantly smaller ones (PDAs and other devices.)

Core Hardware Support
One of the most important strengths of Linux-powered operating systems is their
flexibility and their ability to support a wide range of hardware platforms. While this
document is geared specifically to the uses of Linux on PC-derived hardware types,
the Linux 2.6 kernel has made some remarkable improvements in this area that
deserve to be pointed out.

Scaling Down -- Linux for Embedded
Systems
One of the two most fundamental changes to Linux in 2.6 comes through the
acceptance and merging of much of the uCLinux project into the mainstream kernel.
The uCLinux project (possibly pronounced "you-see-Linux", but more properly
spelled with the Greek character "mu") is the Linux for Microcontrollers project.
This variant of Linux has already been a major driver of support for Linux in the
embedded market, and its inclusion in the official release should encourage further
development in this space. Unlike the "normal" Linux ports that we are generally
accustomed to, embedded ports do not have all the features that we associate with
the kernel, due to hardware limitations. The primary difference is that these ports
feature processors that do not feature an MMU. ("memory management unit" - what
makes a protected-mode OS "protected") While these are generally true multitasking
Linux systems, they are missing memory protection and other related features.
(Without memory protection, it is possible for a wayward process to read the data of,
or even crash, other processes on the system.) This may make them unusable for a
multi-user system, but an excellent choice for a low-cost PDA or dedicated device. It
is difficult to over-emphasize this architecture shift in Linux 2.6; all versions of
Linux up to this point were derived (however indirectly) from the limitations
inherent with Linus' initial work on his Intel 80386.

There are several new lines of embedded processors supported by Linux 2.6,
including Hitachi's H8/300 series, the NEC v850 processor, and Motorola's line of
embedded m68k processors. Motorola's offerings are the most familiar to the
average Linux user as they are the guts underneath Palm Pilots starting with the first
(the Palm 1000), up until the Palm III. Other models go by names such as
Dragonball and ColdFire and are included on systems and evaluation boards
manufactured by Motorola, Lineo, Arcturus, and others. Sadly, support for other,
older m68k processors without MMUs (such as the 68000s used in early

168 Linux kernel version 2.6

Macintoshes) is not yet covered by the new release but it is highly possible that
"hobbyist" projects of the future will seek to support Linux on these and other
antique system.

Although not a part of the uCLinux merge, the new revision of Linux also include
support for Axis Communications' ETRAX CRIS ("Code Reduced Instruction Set")
processors. (Actual support for this processor arrived as a feature during the 2.4
kernel's maintenance cycle - - well after the 2.4.0 release- - so it deserves a brief
mention.) These are embedded processor, but with MMUs, that is primarily used in
network hardware. Related support for MMU-less variants of these processors has
not yet been accepted into the kernel, but are being worked on by outside projects.

In addition to pure hardware support, there have been a number of other wins
through the integration of the embedded work into the mainline kernel. While most
of these changes are under the hood, changes such as ability to build a system
completely without swap support add to the overall robustness of the OS.

Scaling Up -- NUMA and Bigger Iron
The second of the two most fundamental changes in Linux 2.6 happens to work in
the other direction: to make Linux a more acceptable kernel on larger and larger
servers. (Some of these larger servers will be i386 based, and some not.) The big
change in this respect is Linux's new support for NUMA servers. NUMA (or
"Non-Uniform Memory Access") is a step beyond SMP in the multi-processing
world and is a major leap forward for efficiency on systems that have many
processors. Current multiprocessing systems were designed with many of the same
limitations as their uniprocessor counterparts, especially as only a single pool of
memory is expected to serve all processors. On a many-processor system, there is a
major performance bottleneck due to the extremely high contention rate between the
multiple cpus onto the single memory bus. NUMA servers get around that difficulty
by introducing the concept that, for a specific processor, some memory is closer than
others. One easy way (and not terribly technically incorrect) to imagine this is that
you have a system built with separate cards, each containing CPUs, memory, and
possibly other components (I/O, etc.) There are many of these cards in a system and
while they can all talk to each other, it's pretty clear that the CPUs will have the
easiest time talking to the local memory (the memory on the cpu card rather than on
a separate card.)You can imagine the new NUMA architecture being somewhat
similar to a very tight-knit cluster at the lowest levels of hardware.

To properly support these new NUMA machines, Linux had to adapt in several
respects to make the new model efficient. To start with, an internal topology API
was created to actually let the kernel internals understand one processor or one
memory pool's relations to I/O devices and each other. Derived from that, the Linux
process scheduler now is capable of understanding these relationships and will
attempt to optimize tasks for best use of local resources. Additionally, many NUMA
machines are built in such a way that they have "holes" in the linear memory space

Scaling Up -- NUMA and Bigger
Iron

169

"between" nodes. The new kernel is able to deal with those discontinuous cases in a
reasonable way. There are many other internal changes which were made to allow
Linux to support these new high-end machines, and this is definitely an area of
growth for the kernel as a whole. However, this is an area where Linux is very
rapidly growing and maturing and much work remains to be done to make the most
efficient use of resources possible. Over the course of the next year, we can expect to
see many more improvements in Linux's support for these very high-end systems.

Sub-architecture Support
While not quite as core as the two previous changes, the new revision of the kernel
also includes a new concept called a "Sub-architecture" which further extends
Linux's reach into new hardware types. Previously, Linux often had the underlying
assumption that processor types and hardware types went hand in hand. That is, that
i386-descendant processors are only used on PC/AT-descendant servers. In Linux
2.4, this assumption was broken for i386 with the addition of support for SGI's
Visual Workstation, a "legacy-less" platform running with an Intel chip. (And in
fact, it was broken long before on many other architectures. For example, m68k has
long supported Amigas, Macintoshes, and other platforms.) The big change in Linux
2.6 is that this feature and concept was standardized so that all architectures handle
this in a similar and saner way that allows for more clear separation of the
components that need to be separated.

With this standardization comes two new platforms to support for i386. The first is
NCR's Voyager architecture. This is a SMP system (developed before the
now-standard Intel MP specification) supporting 486-686 processors in up to 32x
configurations. The actual number of configurations that were sold with this
architecture is relatively small, and not all machines are supported yet. (The oldest
ones are unsupported.) The second architecture supported is the more widespread
PC-9800 platform developed by NEC into the (almost) dominant PC platform in
Japan until relatively recently. The original PC-9800 machines shipped with an 8086
processor and the line eventually evolved and matured (in parallel with the
AT-descendants) until they featured Pentium-class processors and SMP support. (Of
course, the support for Linux is limited to 386 or better.) Although completely
unknown in the US, versions of Microsoft products up until Windows 95 were
ported to run on this hardware. The line has been officially discontinued by the
manufacturer in favor of more "standard" PCs.

By formalizing Linux's support for these "slightly different" hardware types, this
will more easily allow the kernel to be ported to other systems, such as dedicated
storage hardware and other components that use industry-dominant processor types.
To be absolutely clear though, one should not take this subdivision too far. These
Sub-architecture have been separated because very low-level components of the
system (such as IRQ routing) are slightly or radically different. This is quite
different than running Linux on an X-Box, for example, where relatively little other
than hardware drivers and some quirks separate the system from being a "generic"

170 Linux kernel version 2.6

i386 system. Support for the X-Box would not be a Sub-architecture.

Hyperthreading
Another major hardware advancement supported under Linux 2.6 is hyperthreading.
This is the ability, currently only built into modern Pentium 4 processors but
applicable elsewhere, allows a single physical processor to masquerade (at the
hardware level) as two or more processors. This allows for performance boosts in
some circumstances, but also adds scheduling complexity and other issues. Key in
the kernel's improved support for this feature is that the scheduler now knows how to
recognize and optimize processor loads across both real and virtual processors
within a machine. In previous versions of Linux, it was quite possible to overwork a
single processor because it was not possible to factor in the workload as a whole.
One of the great things to note about this feature is that Linux was ahead of the
market curve on supporting this new hardware feature transparently and
intelligently. (Windows 2000 servers can see the additional faux-processors, but
does not recognize them as virtual. Thus, you also require additional CPU licenses to
take advantage of the feature. It was not until the Windows XP release that
Microsoft completely supported this feature.)

Linux Internals

Scalability Improvements
In addition to the previously described generic features such as NUMA and
hyperthreading, Linux 2.6 also has other changes for Intel servers at the top of the
food chain. First and foremost is improved support for other new Intel hardware
features including Intel's PAE ("Physical Address Extension") which allows most
newer 32-bit x86 systems to access up to 64GB of RAM, but in a paged mode. In
addition, IRQ balancing has been significantly improved on multiprocessor systems
through major improvements to Linux's APIC support.

In addition to just supporting new hardware features, internal limits have been also
increased when possible. For example, the number of unique users and groups on a
Linux system has been bumped from 65,000 to over 4 billion. (16-bit to 32-bit),
making Linux more practical on large file and authentication servers. Similarly, The
number of PIDs (Process IDs) before wraparound has been bumped up from 32,000
to 1 billion, improving application starting performance on very busy or very
long-lived systems. Although the maximum number of open files has not been
increased, Linux with the 2.6 kernel will no longer require you to set what the limit
is in advance; this number will self-scale. And finally, Linux 2.6 will include
improved 64-bit support on block devices that support it, even on 32-bit platforms
such as i386. This allows for filesystems up to 16TB on common hardware.

Another major scalability improvement in Linux 2.6 is that the kernel itself can now

Hyperthreading 171

not only support more types of devices, but also support more devices of a single
type. Under all iterations of Linux (and indeed, most Unix-derived operating
systems), users and applications running on a system communicate with the attached
hardware using numbered device nodes. (The entries in the "/dev" directory.) These
device nodes were limited to 255 "major" devices (generally, one type of device gets
one or more device nodes) and 255 "minor" numbers (generally, specific devices of
that type.) For example, the "/dev/sda2" device (the second partition on the first
detected SCSI disk), gets a major number of 8, common for all SCSI devices, and a
minor number of 2 to indicate the second partition. Different device types allocate
their major and minor numbers differently, so it can't be said with assurance how
many devices you can have on a Linux system. Unfortunately, this system breaks
down badly on large systems where it would be possible, for example, to have many
more than 255 of any specific device in a system. (Think large storage arrays, print
farms, etc.) Under Linux 2.6, these limitations have been eased to allow for 4095
major device types and a more than a million subdevices per type. This increase
should be more than adequate to support high-end systems for the time being.

Interactivity and Responsiveness
In addition to just scaling up, another priority with the new release has been to make
the system more responsive. This is useful not only for the general desktop user
(who always likes to see things respond quickly), but also to more time-critical
applications where absolute preciseness is required to achieve the desired effect.
Despite these changes, Linux 2.6 will not be a "hard" Real Time OS, which has very
strict requirements for absolutely ensuring that actions happen predictably, but the
overall responsiveness improvements should appeal to all classes of Linux users.
(That said, there are external projects which have unofficial patches to provide
RTOS functionality. Those projects could conceivably be made official in the next
major release.)

One of the key improvements in Linux 2.6, is that the kernel is finally preemptible.
In all previous versions of Linux, the kernel itself cannot be interrupted while it is
processing. (On a system with multiple processors, this was true on a per-CPU
basis.) Under Linux 2.6, the kernel now can be interrupted mid-task, so that other
applications can continue to run even when something low-level and complicated is
going on in the background. Of course, there are still times when the kernel cannot
be interrupted in its processing. In reality, most users never saw these delays, which
are rarely over small fractions of a second. Despite that, many users may notice an
improvement in interactive performance with this feature enabled; things like user
input will "feel" faster, even when the system is bogged down.

Linux's Input/Output (I/O) subsystems has also undergone major changes to allow
them to be more responsive under all sorts of workloads. These changes include a
complete rewrite of the I/O scheduler, the code of the kernel that determines what
processes get to read from devices and when. The newly rewritten layer is now
better capable of ensuring that no processes get stuck waiting in line for too long,

172 Linux kernel version 2.6

while still allowing for the older optimizations which made sure that reading data
still happens in the most efficient way for the underlying hardware.

On the application software side, another change that will help make Linux
programs more responsive (if they use the feature) is support for new "futexes" (or
"Fast User-Space Mutexes") Futexes are a way in which multiple processes or
threads can serialize events so that they don't trample on each other (a "race
condition"). Unlike the traditional mutex operations that most threading libraries
support, this concept is partially kernel based (but only in the contention case) and it
also supports setting priorities to allow applications or threads of higher priority
access to the contested resource first. By allowing a program to prioritize waiting
tasks, applications can be made to be more responsive in timing-critical areas.

In addition to all of the above, there have been a number of other smaller changes
which will improve interactivity and performance in many cases. These include
more removals of the "Big Kernel Lock" (non-fine-grained locks which were used in
the early days' of Linux's support for multiple processors), optimizations of
filesystem readahead, writeback, and manipulating small files, and other similar
changes.

Other Improvements
Linux, like the Open Source movement in general, has always been a flag-bearer for
the benefits of open standards. Another major change in the 2.6 release, is that the
kernel's internal threading infrastructure has been rewritten to allow the Native
POSIX Thread Library (NPTL) to run on top of it. This can be a major performance
boost for Pentium Pro and better processors in heavily threaded applications, and
many of the top players in the "enterprise" space have been clamoring for it. (In fact,
RedHat has already backported the support to Linux 2.4 and includes it starting with
RedHat 9 and Advanced Server 3.0) This change includes new concepts to the Linux
thread space including thread groups, local memory for individual threads,
POSIX-style signals, and other changes. One of the major drawbacks is that
applications (such as some versions of Sun Java) not written to spec that rely on old
Linux-isms will break with the new support enabled. As the benefits overwhelm the
cost (and with so many large players in the game), it's clear that most important
applications will support the changes before too long after the new kernel is
released.

Module Subsystem and the Unified
Device Model
Increasingly in modern operating systems, the device handling subsystems have
taken on new prominence as they are forced to deal with a myriad of internal and
external bus types and more devices by more vendors than you can shake a stick at.
It should come as no surprise then, that the upcoming upgrade to the Linux kernel

Other Improvements 173

will include improved support both in its module loader, but also in its internal
understanding of the hardware itself. These changes range from the purely cosmetic
(driver modules now use a ".ko" extension, for "kernel object", instead of just ".o")
to a complete overhaul of the unified device model. Throughout all of these changes
is an emphasis on stability and better grasp of the limitations of the previous
revision.

Strictly in the module (driver) subsystem, there are a handful of major changes to
improve stability. The process for unloading modules have been changed somewhat
to reduce cases where it is possible for modules to be used while they are still being
unloaded, often causing a crash. For systems where this problem cannot be risked, it
is now even possible to disable unloading of modules altogether. Additionally, there
has been extensive effort to standardize the process by which modules determine and
announce what hardware they support. Under previous versions of Linux, the
module would "know" what devices it supported, but this information was not
generally available outside of the module itself. This change will allow hardware
management software, such as RedHat's "kudzu", to make intelligent choices even
on hardware that would not otherwise recognize. Of course, in the event that you
know better than the current version of the driver what it supports, it is still possible
to force a driver to try to work on a specific device.

Outside of just module loading, the device model itself has undergone significant
changes in the updated kernel release. Unlike the module loader, which just has to
concern itself with detecting the resource requirements of incoming hardware, the
device model is a deeper concept which must be completely responsible for all of the
hardware in the system. Linux versions 2.2 and earlier had only the barest support
for a unified device model, preferring instead to leave almost all knowledge of the
hardware solely at the module level. This worked fine, but in order to use all of the
features of modern hardware (especially ACPI), a system needs to know more than
just what resources a device uses: it needs to know things like what bus it is
connected to, what subdevices it has, what its power state is, whether it can be
reconfigured to use other resources in the event of contention, and even to know
about devices that haven't had modules loaded for them yet. Linux 2.4 expanded on
this foundation to become the first edition to unify the interfaces for PCI, PC Card,
and ISA Plug-and-Play busses into a single device structure with a common
interface. Linux 2.6, through its new kernel object ("kobject") subsystem, takes this
support to a new level by not only expanding to know about all devices in a system,
but also to provide a centralized interface for the important little details like
reference counting, power management, and exports to user-space.

Now that an extensive amount of hardware information is available within the
kernel, this has allowed Linux to better support modern laptop and desktop features
that require a much more in-depth knowledge of hardware. The most readily
apparent application is this is the increasing proliferation of so called "hot plug"
devices like PC Cards, USB and Firewire devices, and hot-plug PCI. While it's hard
to think back that far now, Linux didn't offer true support for any of these devices
until the 2.2 kernel. Given that hot-plugging is the rule these days and not the

174 Linux kernel version 2.6

exception, it is fitting that the new device infrastructure essentially eliminates the
differences between a hot-plug and a legacy device. Since the kernel subsystem does
not directly differentiate between a device discovered at boot time from one
discovered later, much of the infrastructure for dealing with pluggable devices has
been simplified. A second up and coming driver of this newly rewritten subsystem is
for improved support of modern power management. The new power management
standard in recent years, called ACPI for "Advanced Configuration and Power
Interface", was first supported in rough form for the previous version of the kernel.
Unlike old-fashioned APM ("Advanced Power Management"), OSes run on systems
with this new interface are required to individually tell all compatible devices that
they need to change their power states. Without a centralized understanding of
hardware, it would be impossible for the kernel to know what devices it needs to
coordinate with and in what order. Although these are just two obvious examples,
there are clearly other areas (such as hardware auditing and monitoring) that will
benefit from a centralized picture of the world.

The final, but possibly the most obvious, ramification of the new centralized
infrastructure is the creation of a new "system" filesystem (to join 'proc' for
processes, 'devfs' for devices, and 'devpts' for Unix98 pseudo-terminals) called
'sysfs'. This filesystem (intended to be mounted on '/sys') is a visible representation
of the device tree as the kernel sees it (with some exceptions). This representation
generally includes a number of known attributes of the detected devices, including
the name of the device, its IRQ and DMA resources, power status, and that sort of
thing. However, one aspect of this change that may be confusing on the short term is
that many of the device-specific uses of the "/proc/sys" directory may be moved into
this new filesystem. This change has not (yet) been applied consistently, so there
may continue to be an adjustment period.

System Hardware Support
As Linux has moved forward over the years and into the mainstream, each new
iteration of the kernel appeared to be leaps and bounds better than the previous in
terms of what types of devices it could support-- both in terms of emerging
technologies (USB in 2.4) and older "legacy" technologies (MCA in 2.2). As we
arrive at the 2.6 however, the number of major devices that Linux does not support is
relatively small. There are few, if any, major branches of the PC hardware universe
yet to conquer. It is for that reason that most (but certainly not all) of improvements
in i386 hardware support have been to add robustness rather than new features.
Internal Devices

Arguably as important as the processor type, the underling bus(es) in a system are
the glue that holds things together. The PC world has been blessed with no shortness
of these bus technologies, from the oldest ISA (found in the original IBM PC) to
modern external serial and wireless busses. Linux has always been quick to adapt to
a new bus and device type as they have become popular with consumer devices, but
significantly less quick adapting to technologies that get relatively little use.

System Hardware Support 175

Improvements in Linux's support for internal devices are really spread across the
board. One specific example where Linux is playing "catch up" is support for the old
ISA ("Industry Standard Architecture") Plug-and-Play extensions. Linux didn't offer
any built-in support for PnP at all until the 2.4 release. This support has been
rounded out with the upcoming kernel to include full PnP BIOS support, a device
name database, and other compatibility changes. The sum of all of those
modifications, is that now Linux is now a "true" Plug-and-Play OS and may be set as
such in a compatible machine's BIOS. Other legacy busses such as MCA
("Microchannel Architecture") and EISA ("Extended ISA") have also been wrapped
into the new device model and feature device naming databases. On a more modern
front Linux 2.6 brings to the table a number of incremental improvements to its PCI
("Peripheral Component Interconnect") subsystem including improved Hot-Plug PCI
and power management, support for multiple AGPs ("accelerated graphics ports" --
a separate high-speed extension to the PCI bus), and other changes. And finally, in
addition to all of the "real" busses, Linux 2.6 has internally added the concept of a
"legacy" bus that is specific to each architecture and contains all of the assumed
devices that you would expect to find. On a PC, for example, this may include
on-board serial, parallel, and PS/2 ports-- devices that exist but are not enumerated
by any real busses on the system. This support may require more complicated work
(such as querying firmware) on some platforms, but in general this is just a wrapper
to ensure that all devices are handled in a standard way in the new driver paradigm.

External Devices
While it is true that the older-style internal device busses have not seen many new
features during the most recent development cycle, the same cannot be said for hot
new external hardware. Possibly the most important change in this space is the new
support for USB 2.0 devices. These devices, commonly referred to as "high speed"
USB devices, support device bandwidth of up to 480 megabits per second, compared
to 12 mbit/sec of current USB. A related new standard, USB On-the-Go (or USB
OTG), a point-to-point variant on the USB protocol for connecting devices directly
together (for example, to connect a digital camera to a printer without having a PC in
the middle) is not currently supported in Linux 2.6. (Patches for this feature are
available, but not yet rolled into the official release.) In addition to device support,
much of the way USB devices have been internally enumerated has been revised so
that it is now possible to have many more devices of the same type all accessible
from within Linux. In addition to the large changes, there has been an emphasis
placed in this development cycle on simplification, stability, and compatibility that
should improve the support of USB devices for all Linux users.

On the complete opposite end of the field, Linux 2.6 for the first time includes
support that allows a Linux-powered machine to be a USB device, rather than a USB
host. This would allow, for example, your Linux-powered PDA to be plugged into
your PC and to have both ends of the line speaking the proper protocol. Much of this
support is new, but this is an essential direction for Linux to move into for embedded
devices.

176 Linux kernel version 2.6

Wireless Devices
Wireless technology has really taken off within the public in the past several years. It
often seems as if cords (except power... maybe?) will be a thing of the past within a
handful of years. Wireless devices encompass both networking devices (the most
common currently) and also more generic devices such as PDAs, etc.

In the wireless networking space, devices can generally be divided into long range
(for example, AX.25 over amateur radio devices) and short range (usually 802.11,
but some older protocols exist.) Support for both of these has been a hallmark of
Linux since the early days (v1.2) and both of these subsystems have been updated
during development of 2.6. The largest change here is that major components of the
short range subsystems for the various supported cards and protocols has been
merged into a single "wireless" subsystem and API. This merge resolves a number
of minor incompatibilities in the way different devices have been handled and
strengthens Linux's support for the subsystem by making a central set of userspace
tools that will work with all supported devices. In addition to just standardization,
Linux 2.6 introduces a number of overall improvements including better capability
to notify in the event of a state change (such as a device that has a "roaming" state)
and a change to TCP to better handle periodic delay spikes which occur with
wireless devices. Due to the immediate desire to better support wireless devices in
the current Linux 2.4 kernel, many of these changes have already been back-ported
and are available for use.

In the generic wireless devices space, there have been similar major advancements.
IrDA (the infrared protocol named for the Infrared Data Associates group) has
received some advancements since the last major release such as power management
and integration into the new kernel driver model. The real advancements however
have been made in providing Linux support for Bluetooth devices. Bluetooth is a
new wireless protocol that is designed to be short range and low on power
consumption, but does not have the line of sight limitations that IrDA has. Bluetooth
as a protocol is designed to go "anywhere" and has been implemented in devices like
PDAs, cell phones, printers, and more bizarre things such as automotive equipment.
The protocol itself is made up of two different data link types: SCO, or
"Synchronous Connection Oriented", for lossy audio applications; and L2CAP, or
"Logical Link Control and Adaptation Protocol", for a more robust connection
supporting retransmits, etc. The L2CAP protocol further supports various
sub-protocols (including RFCOMM for point-to-point networking and BNEP for
Ethernet-like networking.) Linux's support for the things that Bluetooth can do
continues to grow and we can expect this to mature significantly once more devices
are in the hands of the consumers. It should also be mentioned that initial support for
Bluetooth has been integrated into later editions of the 2.4 kernel.

Block Device Support

Block Device Support 177

Storage Busses
Dedicated storage busses, such as IDE/ATA ("Integrated Drive
Electronics/Advanced Technology Attachment") and SCSI ("Small Computer
System Interface"), have also received a major update during the 2.6 cycle. The most
major changes are centered around the IDE subsystem which has been rewritten (and
rewritten again) during the development of the new kernel, resolving many
scalability problems and other limitations. For example, IDE CD/RW drives can
now be written to directly through the real IDE disk driver, a much cleaner
implementation than before. (Previously, it was required to also use a special
SCSI-emulating driver which was confusing and often difficult.) In addition, new
support has been added for high-speed Serial ATA (S-ATA) devices, which have
transfer rates exceeding 150 MB/sec. On the SCSI side, there have also been many
small improvements scattered around the system both for wider support and
scalability. One specific improvement for older systems is that Linux now supports
SCSI-2 multipath devices that have more than 2 LUNs on a device. (SCSI-2 is the
previous version of the SCSI device standard, circa 1994.) Another important change
is that Linux can now fall back to test media changing like Microsoft Windows does,
to be more compatible with devices that do not completely follow the specification.
As these technologies have stabilized over time, so too has Linux's support for them.

Although not a storage bus in itself, Linux now includes support for accessing a
newer machine's EDD ("Enhanced Disk Device") BIOS directly to see how the
server views its own disk devices. The EDD BIOS includes information on all of the
storage busses which are attached to the system that the BIOS knows about
(including both IDE and SCSI.) In addition to just getting configuration and other
information out of the attached devices, this provides several other advantages. For
example, this new interface allows Linux to know what disk device the system was
booted from, which is useful on newer systems where it is often not obvious. This
allows intelligent installation programs to consider that information when trying to
determine where to put the Linux boot loader, for example.

In addition to all of these changes, it should be stressed again that all of the bus
device types (hardware, wireless, and storage) have been integrated into Linux's new
device model subsystem. In some cases, these changes are purely cosmetic. In other
cases, there are more significant changes involved (in some cases for example, even
logic for how devices are detected needed to be modified.)

Filesystems
The most obvious use of a block device on a Linux (or any other) system is by
creating a filesystem on it, and Linux's support for filesystems have been vastly
improved since Linux 2.4 in a number of respects. Key among these changes include
support for extended attributes and POSIX-style access controls.

When dealing strictly with conventional Linux filesystems, the extended filesystems

178 Linux kernel version 2.6

(either "ext2" or "ext3") are the systems most associated with a core Linux system.
(ReiserFS is the third most common option.) As these are the filesystems that users
care about the most, they have also been the most improved during the development
of Linux 2.6. Principal among these changes is support for "extended attributes", or
metadata that can be embedded inside the filesystem itself for a specific file. Some
of these extended attributes will be used by the system and readable and writable by
root only. Many other operating systems, such as Windows and the MacOS, already
make heavy use of these kinds of attributes. Unfortunately, the Unix legacy of
operating systems have not generally included good support for these attributes and
many user-space utilities (such as 'tar') will need to be updated before they will save
and restore this additional information. The first real use of the new extended
attribute subsystem is to implement POSIX access control lists, a superset of
standard Unix permissions that allows for more fine-grained control. In addition to
these changes for ext3, there are several other smaller changes: the journal commit
time for the filesystem can now be tuned to be more suited for laptop users (which
might have to spin up the drive if it were in a power save mode.), default mount
options can now also be stored within the filesystem itself (so that you don't need to
pass them at mount time), and you can now mark a directory as "indexed" to speed
up searches of files in the directory.

In addition to the classic Linux filesystems, the new kernel offers full support for the
new (on Linux) XFS filesystem. This filesystem is derived from and is block-level
compatible with the XFS filesystem used by default on Irix systems. Like the
extended filesystems and Reiser, it can be used as a root-disk filesystem and even
supports the newer features such as extended attributes and ACLs. Many
distributions are beginning to offer support for this filesystem on their Linux
2.4-based distributions, but it remains to be seen yet what place this filesystem will
have in the already crowded pantheon of Unix-style filesystems under Linux.

Outside of those, Linux has also made a number of improvements both inside and
outside the filesystem layer to improve compatibility with the dominant PC
operating systems. To begin with, Linux 2.6 now supports Windows' Logical Disk
Manager (aka "Dynamic Disks"). This is the new partition table scheme that
Windows 2000 and later have adopted to allow for easier resizing and creation of
multiple partitions. (Of course, it is not likely that Linux systems will be using this
scheme for new installations anytime soon.) Linux 2.6 also features improved (and
rewritten) support for the NTFS filesystem and it is now possible to mount a NTFS
volume read/write. (Writing support is still experimental and is gradually being
improved; it may or may not be enabled for the final kernel release.) And finally,
Linux's support for FAT12 (the DOS filesystem used on really old systems and
floppy disks) has been improved to work around bugs present in some MP3 players
which use that format. Although not as dominant in the marketplace, Linux has also
improved compatibility with OS/2 by adding extended attribute support into the
HPFS filesystem. Like previous releases, the new additions to Linux 2.6 demonstrate
the importance of playing well with others and reinforces Linux's position as a
"Swiss Army Knife" operating system.

179

In addition to these changes, there have been a large number of more scattered
changes in Linux's filesystem support. Quota support has been rewritten to allow for
the larger number of users supported on a system. Individual directories can now be
marked as synchronous so that all changes (additional files, etc.) will be atomic.
(This is most useful for mail systems and directory-based databases, in addition to
slightly better recovery in the event of a disk failure.) Transparent compression (a
Linux-only extension) has been added to the ISO9660 filesystem (the filesystem
used on CD-ROMs.) And finally, a new memory-based filesystem ("hugetlbfs") has
been created exclusively to better support shared memory databases.

Input / Output Support
On the more "external" side of any computer system is the input and output devices,
the bits that never quite seem as important as they are. These include the obvious
things like mice and keyboards, sound and video cards, and less obvious things like
joysticks and accessibility devices. Many of Linux's end-user subsystems have been
expanded during the 2.6 development cycle, but support for most of the common
devices were already pretty mature. Largely, Linux 2.6's improved support for these
devices are derived directly from the more general improvments with external bus
support, such as the ability to use Bluetooth wireless keyboards and similar. There
are however a number of areas where Linux has made larger improvements.

Human Interface Devices
One major internal change in Linux 2.6 is the reworking of much of the human
interface layer. The human interface layer is the center of the user experience of a
Linux system, including the video output, mice, and keyboards. In the new version
of the kernel, this layer has been reworked and modularized to a much greater extent
than ever before. It is now possible to create a completely "headless" Linux system
without any included support for a display or anything. The primary benefit of this
modularity may be for embedded developers making devices that can only be
administrated over the network or serial, but end-users benefit as many of the
underlying assumptions about devices and architectures has been modularized out.
For example, it was previously always assumed that if you had a PC that you would
need support for a standard AT (i8042) keyboard controller; the new version of
Linux removes this requirement so that unnecessary code can be kept out of
legacy-less systems.

Support to Linux's handling of monitor output has also received a number of
changes, although most of these are useful only in configurations that make use of
the kernel's internal framebuffer console subsystem. (Most Intel Linux boxes are not
configured this way, but that is not the case for many other architectures.) In my
personal opinion, the best feature is that the boot logo (a cute penguin, if you've
never seen it) now supports resolutions up to 24bpp. That aside, other new features
for the console include resizing and rotating (for PDAs and similar) and expanded

180 Linux kernel version 2.6

acceleration support for more hardware. And finally, Linux has now included kernel
support for querying VESA ("Video Electronics Standard Association") monitors for
capability information, although XFree86 and most distributions installation systems
already have covered this detail in user-space.

In addition to the big changes, Linux 2.6 also includes a number of smaller changes
for human interaction. Touch screens, for example, are now supported. The mouse
and keyboard drivers have also been updated and standardized to only export a
single device node ("/dev/input/mouse0", for example) regardless of the underlying
hardware or protocol. Bizarre mice (with multiple scroll wheels, for example) are
now also supported. PC keyboard key mappings have also been updated to follow
the Windows "standard" for extended keys. Joystick support has also been improved
thanks not only to the addition of many new drivers (including the X Box gamepad),
but also to include newer features such as force-feedback. And finally (but not least
important), the new release also includes support for the Tieman Voyager braille
TTY device to allow blind users better access to Linux. (This feature is important
enough that it has been back-ported to Linux 2.4 already.)

As a side note, Linux has also changed the "system request" interface to better
support systems without a local keyboard. The system request ("sysrq") interface is a
method for systems administrators at the local console to get debugging information,
force a system reboot, remount filesystems read-only, and do other wizardly things.
Since Linux 2.6 now supports a completely headless system, it is now also possible
to trigger these events using the /proc filesystem. (Of course, if your system hangs
and you need to force it to do things, this may not be of much help to you.)

Audio & Multimedia
One of the most anticipated new features of Linux 2.6 for desktop users is the
inclusion of ALSA (the "Advanced Linux Sound Architecture") in lieu of the older
sound system. The older system, known as OSS for "Open Sound System", has
served Linux since the early days but had many architectural limitations. The first
major improvement with the new system is that it has been designed from the start to
be completely thread and SMP-safe, fixing problems with many of the old drivers
where they would not work properly outside the expected
"desktop-means-single-cpu paradigm." More importantly, the drivers have been
designed to be modular from the start (users of older versions of Linux will
remember that modularity was retro-fitted onto the sound system around Linux 2.2),
and that this allows for improved support for systems with multiple sound cards,
including multiple types of sound cards. Regardless of how pretty the internals are,
the system would not be an improvement for users if it did not have neat new
whiz-bang features, and the new sound system has many of those. Key among them
are support for newer hardware (including USB audio and MIDI devices),
full-duplex playback and recording, hardware and non-interleaved mixing, support
for "merging" sound devices, and other things. Whether you are an audiophile or just
someone that likes to play MP3s, Linux's improved sound support should be a

Audio & Multimedia 181

welcome step forward.

Beyond simple audio these days, what users want is support for the really fancy
hardware like webcams, radio and TV adapters, and digital video recorders. In all
three cases, Linux's support has been improved with the 2.6 release. While Linux has
supported (to a greater or lesser extent) radio cards (often through userspace) for
many iterations, support for television tuners and video cameras was only added
within the last one or two major revisions. That subsystem, known as Video4Linux
(V4L), has received a major upgrade during the work on the new edition of the
kernel including both an API cleanup and support for more functionality on the
cards. The new API is not compatible with the previous one and applications
supporting it will need to upgrade with the kernel. And on a completely new track,
Linux 2.6 includes the first built-in support for Digital Video Broadcasting (DVB)
hardware. This type of hardware, common in set-top boxes, can be used to make a
Linux server into a Tivo-like device, with the appropriate software.

Software Improvements

Networking
Leading-edge networking infrastructure has always been one of Linux's prime
assets. Linux as an OS already supports most of the world's dominant network
protocols including TCP/IP (v4 and v6), AppleTalk, IPX, and others. (The only
unsupported one that comes to mind is IBM/Microsoft's obsolete and tangled
NetBEUI protocol.) Like many of the changes in the other subsystems, most
networking hardware changes with Linux 2.6 are under the hood and not
immediately obvious. This includes low-level changes to take advantage of the
device model and updates to many of the device drivers. For example, Linux now
includes a separate MII (Media Independent Interface, or IEEE 802.3u) subsystem
which is used by a number of the network device drivers. This new subsystem
replaces many instances where each driver was handling that device's MII support in
slightly different ways and with duplicated code and effort. Other changes include
major ISDN updates and other things.

On the software side, one of the most major changes is Linux's new support for the
IPsec protocols. IPsec, or IP Security, is a collection of protocols for IPv4 ("normal"
IP) and IPv6 that allow for cryptographic security at the network protocol level. And
since the security is at the protocol level, applications do not have to be explicitly
aware of it. This is similar to SSL and other tunneling/security protocols, but at a
much lower level. Currently supported in-kernel encryption includes various flavors
of SHA ("secure hash algorithm"), DES ("data encryption standard"), and others.

Elsewhere on the protocol side, Linux has improved its support for multicast
networking. Multicast networks are networks where a single sent packet is intended
to be received by multiple computers. (Compare to traditional point-to-point

182 Linux kernel version 2.6

networks where you are only speaking to one at a time.) Primarily, this functionality
is used by messaging systems (such as Tibco) and audio/video conferencing
software. Linux 2.6 improves on this by now supporting several new SSM (Source
Specific Multicast) protocols, including MLDv2 (Multicast Listener Discovery) and
IGMPv3 (Internet Group Messaging Protocol.) These are standard protocols that are
supported by most high-end networking hardware vendors, such as Cisco.

Linux 2.6 also has broken out a separate LLC stack. LLC, or Logical Link Control
protocol (IEEE 802.2), is a low-level protocol that is used beneath several common
higher-level network protocols such as Microsoft's NetBeui, IPX, and AppleTalk. As
part of this change-over, the IPX, AppleTalk, and Token Ring drivers have been
rewritten to take advantage of the new common subsystem. In addition, an outside
source has put together a working NetBEUI stack and it remains to be seen whether
it will ever be integrated into the stock kernel.

In addition to these changes, there have been a number of smaller changes. IPv6 has
received some major changes and it can now also run on Token Ring networks.
Linux's NAT/masquerading support has been extended to better handle protocols
that require multiple connections (H.323, PPTP, etc.) On the Linux-as-a-router front,
support for configuring VLANs on Linux has been made no longer "experimental".

Network Filesystems
Overlaid on top of Linux's robust support for network protocols is Linux's equally
robust support for network filesystems. Mounting (and sometimes exporting) a
network filesystem is one of the very few high-level network operations that the
kernel cares about directly. (The most obvious other, the "network block device", did
not receive many changes for 2.6 and is generally used in specialized applications
where you end up doing something filesystem-like with it anyway.) All other
network operations are content to be relegated to user-space and outside the domain
of the kernel developers.

In the Linux and Unix-clone world, the most common of the network filesystems is
the aptly named Network File System, or NFS. NFS is a complicated file sharing
protocol that has deep roots in Unix (and especially Sun Solaris' excellent
implementation). The primary transport protocol can utilize either TCP or UDP, but
several additional sub-protocols are also required, each of which also run on top of
the separate RPC ("remote procedure call") protocol. These include the separate
"mount" protocol for authentication and NLM ("network lock manager") for file
locking. (The common implementation is also tied closely to other common
RPC-based protocols, including NIS-- "network information service"-- for
authentication. NIS and its progeny are not commonly used for authentication on
Linux machines due to fundamental insecurities.) It is perhaps because of this
complexity that NFS has not been widely adapted as an "Internet" protocol.

In Linux 2.6, this core Linux filesystem received many updated and improvements.

Network Filesystems 183

The largest of these improvements is that Linux now experimentally supports the
new and not widely adopted NFSv4 protocol version for both its client and server
implementations. (Previous versions of Linux included support for only the v2 and
v3 versions of the protocol.) The new version supports stronger and more secure
authentication (with cryptography), more intelligent locking, support for
pseudo-filesystems, and other changes. Not all of the new NFSv4 features have been
implemented in Linux yet, but the support is relatively stable and could be used for
some production applications. In addition, Linux's NFS server implementation has
been improved to be more scalable (up to 64 times as many concurrent users and a
larger request queues), to be more complete (by supporting serving over TCP, in
addition to UDP), to be more robust (individual filesystems drivers can adapt the
way files on those systems are exported to suit their particularities), and more easily
maintainable (management though a new 'nfsd' filesystem, instead of system calls.)
There have also been may other under the hood changes, including separating lockd
and nfsd, and support for zero-copy networking on supported interfaces. NFS has
also been made somewhat easier to secure by allowing the kernel lockd port
numbers to be assigned by the administrator. The NFS client side has also benefited
from a number of improvements to the implementation of the underlying RPC
protocol including a caching infrastructure, connection control over UDP, and other
improvements for TCP. Linux's support for using NFS-shared volumes as the root
filesystem (for disk-less systems) has also been improved as the kernel now supports
NFS over TCP for that purpose.

In addition to improving support for the Unix-style network filesystems, Linux 2.6
also delivers many improvements to Windows-style network filesystems. The
standard shared filesystem for Windows servers (as well as OS/2 and other operating
systems) has been the SMB ("server message block") protocol and the Linux kernel
has had excellent client support of the SMB protocol for many revisions. Windows
2000 however standardized on an upgraded superset of the SMB protocol, known as
CIFS ("common Internet filesystem.") The intention of this major update was to
streamline and refine certain aspects of SMB which had at that point become a
complete mess. (The protocol itself was loosely defined and often extended to the
point that there were cases even where the Win95/98/ME version was incompatible
with the WinNT/Win2k version.) CIFS delivered on that intention and added
UNICODE support, improved file locking, hard linking, eliminated the last vestiges
of NetBIOS dependencies, and added a few other features for Windows users. Since
Linux users do not like to be kept in the dark for long, Linux 2.6 now includes
completely rewritten support for mounting CIFS filesystems natively. Linux 2.6 also
now includes support for the SMB-Unix extensions to the SMB and CIFS protocols
which allows Linux to access non-Windows file types (such as device nodes and
symbolic links) on SMB servers which support it (such as Samba.) Although not as
commonly seen today, Linux has not completely forgotten about the Novell
NetWare users. Linux 2.6 now allows Linux clients to mount up to the maximum of
256 shares on a single NetWare volume using its built in NCP ("NetWare Core
Protocol") filesystem driver.

Linux 2.6 also includes improved support for the relatively new domain of

184 Linux kernel version 2.6

distributed network filesystems, systems where files on a single logical volume can
be scattered across multiple nodes. In addition to the CODA filesystem introduced in
Linux 2.4, Linux now includes some support for two other distributed filesystems:
AFS and InterMezzo. AFS, the Andrew filesystem (so named because it was
originally developed at CMU), is presently very limited and restricted to read-only
operations. (A more feature complete version of AFS is available outside the
kernel-proper.) The second newly supported filesystem, InterMezzo (also developed
at CMU), is also newly supported under Linux 2.6 and it allows for more advanced
features such as disconnect operation (so you work on locally cached files) and is
suitable for high-availability applications where you need to guarantee that storage is
never unavailable (or faked, when down). It also has applications for keeping data in
sync between multiple computers, such as a laptop or PDA and a desktop computer.
Many of the projects providing support for these new types of filesystems are
initially developed on Linux, putting Linux well ahead of the curve in support for
these new features.

Miscellaneous Features

Security
Another of the big changes in Linux 2.6 that does not receive enough attention is the
wealth of new security-related changes. Most fundamentally, the entirety of
kernel-based security (powers of the super user under a Unix-like operating system)
has been modularized out to be one out of a potential number of alternate security
modules. (At present however, the only offered security model is the default one and
an example how to make your own.) As part of this change, all parts of the kernel
have now been updated to use "capabilities" as the basis of fine-grained user access,
rather than the old "superuser" system. Nearly all Linux systems will continue to
have a "root" account which has complete access, but this allows for a Linux-like
system to be created which does not have this underlying assumption. Another
security-related change is that binary modules (for example, drivers shipped by a
hardware manufacturer) can no longer "overload" system calls with their own and
can no longer see and modify the system call table. This significantly restricts the
amount of access that non-open source modules can do in the kernel and possibly
closes some legal loopholes around the GPL. The final change that is somewhat
security-related is that Linux with the new kernel is now able to use hardware
random number generators (such as those present in some new processors), rather
than relying on a (admittedly quite good) entropy pool based on random hardware
fluctuations. Virtualizing Linux

One of the most interesting new features in Linux 2.6 is its inclusion of a
"user-mode" architecture. This is essentially a port (like to a different hardware
family) of Linux to itself, allowing for a completely virtualized Linux-on-Linux
environment to be run. The new instance of Linux runs as if it was a normal
application. "Inside" the application, you can configure fake network interfaces,

Miscellaneous Features 185

filesystems, and other devices through special drivers which communicate up to the
host copy of Linux in a secure way. This has proved quite useful, both for
development purposes (profiling, etc.) as well as for security analysis and honeypots.
While most users will never need this kind of support, it is an incredibly "cool"
feature to have running on your box. (Impress your friends!)

Laptops
In addition to all of the other general purpose support described above (improved
APM and ACPI, wireless support improvements, etc.) Linux also includes two other
hard-to-classify features that will best assist laptop users. The first is that the new
edition of the kernel now supports software-suspend-to-disk functionality for the
Linux user on the go. This feature still has some bugs to iron out, but is looking solid
for many configurations. The new version also supports the ability of modern mobile
processors to change speed (and, in effect, power requirements) based on whether
your system is plugged in or not.

Configuration Management
Linux 2.6 includes another feature which might seem minor to some, but will both
greatly assist developers' abilities to debug kernel problems of end-users as well as
make it easier for individual administrators to know configuration details about
multiple systems. In short, the kernel now supports adding full configuration
information into the kernel file itself. This information would include details such as
what configuration options were selected, what compiler was used, and other details
which would help someone reproduce a similar kernel if the need arose. This
information would also be exposed to users via the /proc interface.

Legacy Support
Although Linux 2.6 is a major upgrade, the difference to user-mode applications will
be nearly non-existent. The one major exception to this rule appears to be threading:
some applications may do things that worked under 2.4 or 2.2 but are no longer
allowed. Those applications should be the exception to the rule however. Of course,
low-level applications such as module utilities will definitely not work. Additionally,
some of the files and formats in the /proc and /dev directories have changed and any
applications that have dependencies on this may not function correctly. (This is
especially true as more things shift over to the new "/sys" virtual filesystem. In the
"/dev" case, backwards-compatible device names can easily be configured.)

In addition to those standard disclaimers, there are a number of other smaller
changes which may affect some environments. First, very old swap files (from Linux
2.0 or earlier) will need to be reformatted before they can be used with 2.6. (Since
swap files do not contain any permanent data, that should not be a problem for any
user.) The kHTTPd daemon which allowed the kernel to serve web pages directly

186 Linux kernel version 2.6

has also been removed as most of the performance bottlenecks that prevented
Apache, Zeus, et. al. from reaching kernel speeds have been resolved. Autodetection
of DOS/Windows "disk managers" such as OnTrack and EzDrive for large harddisk
support with older BIOSes has been removed. And finally, support for using a
special kernel-included boot sector for booting off of a floppy disk has also been
removed; you now need to use SysLinux instead.

Stuff At The Bottom
This document was assembled primarily from long hours looking at BitKeeper
changelogs, looking at and playing with the source, reading mailing list posts, and
lots and lots of Google and Lycos searches for documentation about this and that. As
such, there are likely places where something could have been missed or
misunderstood, and places where something could have been backed out after the
fact. (I have been especially careful of the two versions of IDE support that were
worked on during this time period, but there are other examples.) As a bit of my
research was done by looking at the web pages of various kernel projects, I have had
to be careful that the independent projects weren't farther ahead with features than
were accepted into the mainline Linux code. If you see any errors in this document
or want to email me to ask me how my day is going, you can do so at jpranevich
<at> kniggit.net.

The newest version of this document can always be found at
http://kniggit.net/wwol26.html

Translations
Not an English speaker? This document (or an older revision) has been translated
into a handful of other languages.

Bulgarian - http://kniggit.net/wwol26bg.html (Ivan Dimov)

Chinese
-http://www-900.ibm.com/developerWorks/cn/Linux/kernel/l-kernel26/index.shtml
(Stone Wang, et. al.)

Czech - http://www.Linuxzone.cz/index.phtml?ids=10&idc=782 (David Haring)

French - http://dsoulayrol.free.fr/articles/wonderful_2.6.html (David Soulayrol)

Hungarian -
http://free.srv.hu/b/e/behun/pn/modules.php?op=modload&name=News&file=index&catid=&topic=12
(Ervin Novak) (Not yet completed.)

Italian - http://www.opensp.org/tutorial/vedi.php?appartenenza=42&pagine=1
(Giulio Ciuffi Vampa)

Stuff At The Bottom 187

http://kniggit.net/wwol26.html
http://kniggit.net/wwol26bg.html
http://www-900.ibm.com/developerWorks/cn/Linux/kernel/l-kernel26/index.shtml
http://www.Linuxzone.cz/index.phtml?ids=10&idc=782
http://dsoulayrol.free.fr/articles/wonderful_2.6.html
http://free.srv.hu/b/e/behun/pn/modules.php?op=modload&name=News&file=index&catid=&topic=12
http://www.opensp.org/tutorial/vedi.php?appartenenza=42&pagine=1

Portuguese (BR) - http://geocities.yahoo.com.br/cesarakg/wwol26-ptBR.html (Cesar
A. K. Grossmann)

Russian - http://www.opennet.ru/base/sys/Linux26_intro.txt.html (Sergey
Prokopenko)

Spanish - http://www.escomposLinux.org/wwol26/wwol26.html (Alex Fernandez)

An abridged version also appeared in German in the 09/2003 issue of LanLine
magazine. I believe that an unabridged edition may be floating around also, but I am
uncertain of the link. If you know of any additional translations to add to this list,
please let me know.

This document [the article entitled "Linux kernel version 2.6"] is Copyright 2003 by
Joseph Pranevich. Redistribution online without modification is permitted. Offline
distribution (in whole or in part) is also encouraged, but please email me first to
discuss the details. Translations are also encouraged; please email me though so that
I can help coordinate.

188 Linux kernel version 2.6

http://geocities.yahoo.com.br/cesarakg/wwol26-ptBR.html
http://www.opennet.ru/base/sys/Linux26_intro.txt.html
http://www.escomposLinux.org/wwol26/wwol26.html

Index
B
bash shell, 53
bzip2, 95

C
C Shell, 53
cal, 65
cat, 69
cd, 67
chmod, 103
clear, 111
cp, 88
cylinder groups, 72

D
date, 65

E
echo, 60
Eric S Raymond

ESR, 32

F
file, 87
Free Software Foundation

FSF, 23

G
grep, 90
gzip, 95

H
Hardware Layer, 46
head, 94

I
info, 64
inode, 72

K
kernel, 45

Kernel, 46

L
last, 112
less, 71
Linus Torvalds

Linus, 30
ls, 66

M
magic, 87
man, 63
mkdir, 90
more, 71
mv, 88

P
PAGER, 64
ps, 71
PS1, 61
pwd, 67

R
reverse case-insensitive history search, 55
Richard M Stallman

RMS, 29
rm, 88
rmdir, 90

S
Standard Library of Procedures, 47
Standatd Utillities and User Applications, 47
stderr, 108
stdin, 107
stdout, 107
super-block, 72

T
tail, 94
TC Shell, 53
TERM, 61
The Open Source Initiative

OSI, 25
time slicing, 48
touch, 88
tty, 112

U
umask, 105
uname, 111
userland, 45
username and password, 49

W
wc, 95
Wildcards, 96

190 Index

	Linux Fundamentals
	Table of Contents
	Chapter 1. Details of requirements for the courses
	Machine Requirements
	Course Pre-requisites And Outcomes
	A theory that works
	Pre-requisite knowledge and outcomes

	Chapter 2. Linux Distributions and Certifications
	Licensing and availability details for Debian, Red Hat and SuSE
	SUSE Linux
	Red Hat
	Red Hat for Home Users: Fedora
	Fedora License
	Fedora System Requirements

	Red Hat Enterprise Linux
	Red Hat Enterprise Linux ws
	Red Hat Enterprise Linux ws capabilities and System Requirements

	Red Hat Enterprise Linux ES
	Red Hat Enterprise Linux AS
	Red Hat Enterprise Linux AS Capabilities and Supported Hardware

	Red Hat Professional Workstation
	Red Hat Professional Workstation capabilities and Supported Hardware

	Red Hat Enterprise Family Licensing

	Debian GNU/Linux

	On Line Classmates Information and Registration
	Certification
	Linux Professional Institute Certification
	SAIR Linux and GNU Certification
	Red Hat Certification
	RHCT Certification
	The RHCE certification:

	Chapter 3. History and Politics A Business Oriented Background
	Introduction
	Open Source and Free Software Licenses
	The definition of Open Source, Free Software and Open Content
	The GNU Project and the Free Software Foundation
	The Open Source Initiative
	Summary of difference between Open Source and Free Software:
	Open Content:

	The History of Open Source Software
	The GNU Project
	GNU is born
	The birth of the Linux kernel
	The GNU's kernel

	Benefits of the Open Source Development methods
	The Cathedral and the Bazaar
	Who is Eric Raymond?
	A Summary of "the Cathedral and the Bazaar"
	Conclusion

	Why is Free Software not used extensively in the Enterprise environment?
	Introduction
	Cost
	Productivity
	Security
	Maturity
	Support

	Does Linux meet industry standards i.e. POSIX, IEEE, X/OPEN ?
	Exercises and Quiz
	Setup of Linux Emulator for Fundamentals Course

	Chapter 4. Essentials
	What is Linux?
	Structure of a Linux Based Operating System.
	Hardware
	Kernel
	Standard Library of Procedures
	Standard Utilities and User Applications
	Lateral thinking with further details on the Operating System Simone Demblon
	How These All Work Together
	Process Flow:

	Logging into a Linux System
	Login
	The Password File

	The Shell Command Interpreter
	Different Shell Command Interpreters
	The Command History within the shell
	Configuring your shell environment
	Shell Command Processing
	Special Characters
	Internal Commands:
	Shortcuts and Aliases:
	External Commands:

	The Shell Environment
	Setting A New Shell Variable Or Resetting An Existing Variable
	Exporting a variable value
	The echo command
	Discussing system variables - TERM and PS1

	Using Shell Commands
	The man pages
	EXCERCISE:

	The GNU Info pages
	EXCERCISE:

	the date command
	The cal command
	Exercise:

	the ls command
	Exercise:

	The pwd command
	Exercise:

	The cd command
	Exercises:

	The cat command
	Exercise:

	The more and less commands
	The ps command
	Exercise:

	Files and Directories
	Files under Linux
	Inodes
	File Mode
	File types
	File Permissions
	Number of links
	Owner name
	Group Name
	Number of bytes in the file
	Modification Time
	File Name

	Linux FS Hierarchy
	Exercise:
	Explanation of how to use /var and /usr efficiently:

	Editing Files under Linux
	History
	Using vim
	Exercise

	Working with normal data files
	Naming conventions (lowercase, etc.)
	Using " file", magic
	File manipulation commands:
	touch
	mv, rm, cp
	mkdir, rmdir
	grep
	find
	head and tail
	wc
	gzip, bzip2
	Wildcards

	links
	symbolic links versus hard links
	Hard links
	Symbolic Link

	File permissions/security
	chmod
	Octal mode:
	Symbolic mode:

	chown and chgrp
	umask

	File Redirection, Named and un-named pipes
	stdin
	stdout
	stderr
	Appending to a file
	Piping

	Other commands

	Appendix A. Linux Professional Institute (LPI) Certification
	Introduction
	Junior Level Administration (LPIC1)
	LPI exam 101 Details
	LPI Exam 102

	Intermediate Level Administration (LPIC2)
	LPI Exam 201
	Exam 202

	Appendix B. Linux kernel version 2.6
	The Wonderful World of Linux

	Index

