
Pagure CI based on Zuul
Fabien Boucher



Topics

● Zuul, main concepts and features
● Zuul and Pagure
● Proof of concept
● How Fedora could benefit from Zuul



Zuul, main concepts and features



Keeping code branch healthy is hard

● Validating a patch can take a long time or can require a complex environment
● The velocity of a patch submission can be high
● Merging code is usually an human process, prone to side effect



A simple gating strategy

● Project’s maintainers should merge patch only if the patch pass the test 
suite

● Code Review system such as Github allow to run test suites on PR



Simple gating is flawed

● Potential side effects as pre-merge testing may occur on an outdated 
version of the code

● Potential side effects increase in case of interdependent repositories



A proposal for a better gating system

● Approved patches must always be tested on top of the latest 
version of the code JUST BEFORE they are merged

● Multi-repo and un-merged patches dependencies support
● Patches merging order must match the patches approval order
● The gating must be automated
● The CI system must be scalable



Main concepts and some numbers

Built for OpenStack testing needs

● multi-repository and patches 
dependency management

● CI and parallel co-gating
● Scaling
● Compatible with Gerrit, Github 

and Pagure

Ballpark statistics from OpenStack CI

● 1500 git repos
● 2K jobs per hour
● 10K patches merged by month

Zuul is generic and not tied only to OpenStack



Zuul - More concepts and features

● Event-driven pipelines
● CI-as-code
● Ansible
● Support for jobs inheritance, jobs dependencies, jobs chaining with 

artifacts sharing
● Multi-nodes jobs
● Resources lifecycle management (Nodepool) and reproducible job 

environments
● Secrets management
● Multi-tenancy



Event pipelines
● Pipelines are run depending on events on the Code Review system:

○ CHECK: when a patch is created or updated
○ GATE: when a patch is approved for merging

● Pipelines can also be defined on git events



Cross-repositories dependencies

● When starting a job for a specific repository, Zuul pulls every repository defined with a 
dependency relationship as well into the job’s workspace

● By default, dependencies are fetched at the tip of the branch
● To fetch a non merged patch instead, use the “Depends-On” keyword and the URL of the 

patch in the commit message
● Zuul won’t merge a patch that depends on other patches until all the dependencies have 

been merged



Gate pipeline workflow



Gate pipeline workflow



Gate pipeline workflow



Gate pipeline workflow



Integration between Zuul and Pagure



Zuul drivers for Code Review system

● Current Code Review drivers:
○ Gerrit
○ Github and Github enterprise
○ Pagure

● A driver should be able to
○ listen to events
○ read PR status (approval, flags, mergeability, …)
○ Act on PR (report back CI status, merge code)



How Zuul interact with Pagure



Proof of concept



Artifact sharing with child jobs



The job definition



The post-run playbook tasks



How child jobs reuse the artifact

From the job’s inventory



PR dependency and RPM BuildRequire



From the job’s inventory

From the job’ logs



Run Zuul jobs from Fedmsg events



How Fedora could benefit from Zuul ?



Main advantages of Zuul

● Multi-repository and depends-on
● Co-Gating
● Cross-provider Gating (Pagure/Github)
● Zuul job + Ansible
● CI configuration as code



Resources

More info on the POC: https://fedoraproject.org/wiki/Zuul-based-ci

How to spawn a Zuul sandbox:

● https://zuul-ci.org/docs/zuul/admin/quick-start.html
● https://www.softwarefactory-project.io/docs/3.3/operator/quickstart.html

Software Factory used for the POC - https://fedora.softwarefactory-project.io/zuul

https://fedoraproject.org/wiki/Zuul-based-ci
https://zuul-ci.org/docs/zuul/admin/quick-start.html
https://www.softwarefactory-project.io/docs/3.3/operator/quickstart.html
https://fedora.softwarefactory-project.io/zuul
https://fedora.softwarefactory-project.io/zuul


Questions / Comments ?


	Slide 1
	Topics
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Main concepts and some numbers
	Zuul - More concepts and features
	Event pipelines
	Cross-repositories dependencies
	Gate pipeline workflow
	Gate pipeline workflow
	Gate pipeline workflow
	Gate pipeline workflow
	Slide 16
	Zuul drivers for Code Review system
	How Zuul interact with Pagure
	Slide 19
	Artifact sharing with child jobs
	Slide 21
	Slide 22
	Slide 23
	PR dependency and RPM BuildRequire
	Slide 25
	Run Zuul jobs from Fedmsg events
	How Fedora could benefit from Zuul ?
	Main advantages of Zuul
	Resources
	Slide 30

