Fedora 20 for ARM
The Fedora ARM team is pleased to announce that Fedora 20 for the ARM Architecture is now available for download from:
http://download.fedoraproject.org/pub/fedora/linux/releases/20/Images/armhfp/
Fedora 20 for ARM includes two image types - one for use with platforms requiring a VFAT partition (such as Texas Instruments's AM335x-based Beaglebone Black), the other for use with devices that boot from an EXT3/4 partition (such as CompuLab's Tegra2-based TrimSlice). For each of these image types, there are a number of images providing for a variety of desktop choices (including MATE, KDE, XFCE, LXDE, SOAS), as well as a minimal image that does not include the desktop. Any of these images can be used with QEMU on an x86_64 desktop to emulate a fully functional ARM environment.
The image-based installation process involves downloading an image file (depending upon the target type and desktop/non-desktop option desired), inserting removable media into a "host" system (e.g. an ARM or x86_64 PC class desktop, laptop, etc.) and performing a few simple commands to write this image onto the media. This media is then used by the ARM "target" system to boot the Fedora 20 environment.
For the BeagleBone Black
Support for the BeagleBone Black has been added in Fedora 20. The GA release includes basic support which will be extended to include HDMI and USB with the release of the 3.12 kernel. A remix is planned when support is available. In the interim, the minimal image is recommended.
TYPE= # options include KDE, LXDE, XFCE, SoaS, Mate and Minimal wget http://download.fedoraproject.org/pub/fedora/linux/releases/20/Images/armhfp/Fedora-$TYPE-VFAT-armhfp-20-1-sda.raw.xz
Copy the image to the intended media:
xzcat Fedora-$TYPE-VFAT-armhfp-20-1-sda.raw.xz | sudo dd of=/dev/<location-of-your-media>
Auto-mount the newly created media and copy the U-Boot files from the root partition to the UBOOT partition (when auto-mounting on Fedora the partitions will show up as follows):
USER= #your username cp /run/media/$USER/__/usr/share/uboot-beaglebone/* /run/media/$USER/uboot/ cp /run/media/$USER/uboot/uEnv.txt.beaglebone /run/media/$USER/uboot/uEnv.txt
Insert into your BeagleBone Black and boot. (NOTE - do not hold any buttons on the Beaglebone Black to allow U-Boot to be loaded from eMMC. The LEDs will remain lit in U-Boot and will shut off when the Fedora kernel is booted)
Change one option in this file(only BeagleBone Black):
vi /run/media/$USER/uboot/uEnv.txt abcboard=am335x-bone > abcboard=am335x-boneblack
For the CompuLab TrimSlice
Download the image of your choice for use with the TrimSlice:
TYPE= # options include KDE, LXDE, XFCE, SoaS, Mate and Minimal wget http://download.fedoraproject.org/pub/fedora/linux/releases/20/Images/armhfp/Fedora-$TYPE-armhfp-20-1-sda.raw.xz
Copy the image to the intended media:
xzcat Fedora-$TYPE-armhfp-20-1-sda.raw.xz | sudo dd of=/dev/<location-of-your-media>
Insert into the TrimSlice and boot. Fedora will boot to an initial setup screen allowing you to create your user, set the root password and timezone.
Known Issues on the Trimslice
- Loading a graphically enabled Initrd from some SD cards fails with an 'mmc_timeout' error. This is reported to be a bug with the version of U-Boot provided by CompuLab. The Initrd on the images is a generic ram disk that is replaced with a host specific version after the first kernel update. To work around this issue on the Fedora 20 release image, a host specific initrd is provided here.
- An updated version of U-Boot is also provided by Torez Smith and can be downloaded from her Fedora People page - http://torez.fedorapeople.org/trimslice/mmc_timeout_error. The 'Readme' contains installation instructions.
For the Wandboard (Freescale i.MX6)
The Fedora kernel currently does not support a display on the Wandboard. For this reason the Minimal image is recommended.
wget http://download.fedoraproject.org/pub/fedora/linux/releases/20/Images/armhfp/Fedora-Minimal-armhfp-20-1-sda.raw.xz xzcat Fedora-Minimal-armhfp-20-1-sda.raw.xz | sudo dd of=/dev/<location-of-your-media> sync
Remove and reinsert the media into the host PC to automatically mount the image.
The Wandboard includes a Solo, Dual, and Quad core configuration. Determine your hardware configuration and use the appropriate value. While the Wandboard Quad has been tested and confirmed working, the Solo and Dual core models should also work as well.
USER= # your username cd /run/media/$USER/__boot sudo ln -sf dtb-3.11.10-301.fc20.armv7hl dtb
Create the extlinux.conf file manually (from the current directory 'sudo vi extlinux/extlinux.conf):
# extlinux.conf generated by anaconda #ui menu.c32 menu autoboot Welcome to Fedora. Automatic boot in # second{,s}. Press a key for options. #menu title Fedora Boot Options. #menu hidden timeout 60 #totaltimeout 9000 label Fedora (3.11.10-301.fc20.armv7hl) 20 (Heisenbug) kernel /vmlinuz-3.11.10-301.fc20.armv7hl append console=ttymxc0,115200 root=UUID=7ee85ed8-de4a-4779-8658-2daed0d35e97 ro rhgb quiet LANG=en_US.UTF-8 fdt /dtb/imx6q-wandboard.dtb initrd /initramfs-3.11.10-301.fc20.armv7hl.img
Copy the U-boot for the hardware in use:
BOARD= # Choose 'solo', 'dl' or 'quad' sudo cp /run/media/$USER/__/usr/share/uboot-imx6$BOARD/u-boot.imx /home/$USER/ sync
Unmount the media and copy the U-boot file:
cd ~ sudo umount /run/media/$USER/__boot sudo umount /run/media/$USER/__ sudo dd if=/home/$USER/u-boot.imx of=/dev/<location-of-your-media> bs=1k seek=1 conv=fsync sync
Remove the media and insert into the Wandboard and boot.
Network Installation on the Wandboard
Regardless of how you you choose to network install your wandboard you will need to install u-boot onto the microsd card first.
The prefered way to network install Fedora on the wandboard is to setup a pxe install tree you will need to mirror all the contents of the pxeboot tree including the dtb directory that has dtbs for all boards
if for some reason you can not use pxe you can manually load each of the bits from a tftp server by following the following steps.
This has been tested on the Wandboard Quad, use the appropriate 'dtb' for your board and adjust the IP addresses to match your network. This will also require a working tftp server and a MicroSD with U-Boot.
setenv ipaddr $WANDBOARDIP # or use 'dhcp get' for IP setenv serverip $TFTPBOOTSEVER # Set this to your TFTP boot server setenv bootargs console=ttymxc0,115200 ip=eth0:dhcp inst.repo=http://download.fedoraproject.org/pub/fedora/linux/releases/20/Fedora/armhfp/os/ rd.shell tftpboot ${ramdisk_addr_r} ${serverip}:initrd.img tftpboot ${kernel_addr_r} ${serverip}:vmlinuz tftpboot ${fdt_addr} ${serverip}:imx6q-wandboard.dtb bootz ${kernel_addr_r} ${ramdisk_addr_r} ${fdt_addr}
Install MicroSD
A pre-made MicroSD image is available here:
wget http://pwhalen.fedorapeople.org/Fedora/20/Fedora-20-Wandboard-Installer.raw.xz xzcat Fedora-20-Wandboard-Installer.raw.xz | sudo dd of=/dev/<location-of-your-media> sync
Remove and re-insert the media, unmount the MicroSD and copy U-Boot:
wget http://pwhalen.fedorapeople.org/Fedora/20/u-boot.imx dd if=u-boot.imx of=/dev/<location-of-your-media> bs=1k seek=1
If you reformatted '/boot' during the installation to the MicroSD you will need re-write U-Boot to the MicroSD card and create the DTB symlink as noted above.
Known issues on the Wandboard
- When updating the kernel you will need to update the symlink for the DTB in '/boot'
- USB Root not booting. SATA untested.
- The secondary sdcard slot is not enabled when booting the original kernel from the image. A kernel (and dtb) which make it work is available as update.
For the Pandaboard
Fedora 20 did not include support for the Pandaboard due to issues booting with the DTB. This has now been resolved with an update to 'arm-boot-config' and the addition of a U-Boot environmental variable 'bootm_size'. Because these changes were not ready in time for the official release, a Fedora Respin was created specifically for use with the Pandaboard, and using all Fedora 20 GA release packages with the addition of the 'arm-boot-config-0.62-1.fc20' from the Fedora Updates repository.
# Download the disk image (Minimal and Xfce images available) TYPE= # Minimal or Xfce wget http://pwhalen.fedorapeople.org/Fedora/20/Fedora-$TYPE-VFAT-armhfp-20-Respin-sda.raw.xz # Write to the media of your choosing xzcat -v Fedora-Xfce-VFAT-armhfp-20-Respin-sda.raw.xz | sudo dd of=/dev/<location-of-your-media>
# Auto-mount the newly created media and copy the U-Boot files from the root partition to the UBOOT partition # (when auto-mounting on Fedora the partitions will show up as follows): USER= #your username cp /run/media/$USER/__/usr/share/uboot-panda/* /run/media/$USER/uboot/ # Copy the appropriate file to uEnv.txt (depending on your board - panda, panda-es, panda-a4) cp /run/media/$USER/uboot/uEnv.txt{.panda,}
Insert into your device and boot.
Known Issues on the Pandaboard
- When booting for the first time it is possible for the Pandaboard to get caught in an indefinite loop. If this occurs, stop the boot and load the 'boot.scr' manually by entering the following:
ext4load mmc 0:3 ${loadaddr} /boot/boot.scr; echo Running boot.scr script from mmc ...; source ${loadaddr}
For Versatile Express Emulation with QEMU
No ARM hardware? No problem! Even without hardware, it is possible to run the Fedora 20 Beta for ARM images using the QEMU emulator program. Any image can be used, and you can choose a script method or manual depending on your preference.
Using an Existing Disk Image
TYPE= # options include KDE, LXDE, XFCE, SoaS, Mate and Minimal wget http://download.fedoraproject.org/pub/fedora/linux/releases/20/Images/armhfp/Fedora-$TYPE-armhfp-20-1-sda.raw.xz
Extract the image:
unxz Fedora-$TYPE-armhfp-20-1-sda.raw.xz
Install 'libguestfs-tools' to use virt-copy
sudo yum install -y libguestfs-tools
Extract the kernel and initramfs for use with booting.
virt-copy-out -a Fedora-$TYPE-armhfp-20-1-sda.raw /boot/vmlinuz-3.11.10-301.fc20.armv7hl . virt-copy-out -a Fedora-$TYPE-armhfp-20-1-sda.raw /boot/initramfs-3.11.10-301.fc20.armv7hl.img .
To boot:
sudo qemu-system-arm -machine vexpress-a9 -m 1024 -nographic -net nic -net user \ -append "console=ttyAMA0,115200n8 rw root=/dev/mmcblk0p3 rootwait physmap.enabled=0" \ -kernel vmlinuz-3.11.10-301.fc20.armv7hl \ -initrd initramfs-3.11.10-301.fc20.armv7hl.img \ -sd Fedora-$TYPE-armhfp-20-1-sda.raw \
For convenience you can also download a script for booting the system here. To run the script:
chmod 755 boot-vexpress ./boot-vexpress -h Usage: ./boot-vexpress [--gui] --kernel=vmlinuz... --ramfs=initramfs --image=fsimage [--dtb=vexpress.dtb]
To boot the image:
sudo ./boot-vexpress --kernel=vmlinuz-3.11.10-301.fc20.armv7hl --ramfs=initramfs-3.11.10-301.fc20.armv7hl.img --image=Fedora-$TYPE-armhfp-20-1-sda.raw
Booting with device tree is possible, although passing --gui for graphics will not work at this time (this is due to ongoing platform reword occurring within the Versatile Express kernel code). Booting without device tree is recommended for F-20, as it will work in both serial and graphics mode, whereas passing a DTB will only work with serial.
Expanding the Disk Image
You can easily expand the root partition of the disk image using qemu-img
.
For example to increase the image size by 10GB you can issue:
qemu-img resize ./file.img +10G
Interactive Network Installation
Fedora 20 offers the ability to perform a network installation using either 'vexpress-a15' or 'vexpress-a9'. Using 'vexpress-a15' will allow you to leverage more RAM using the LPAE kernel.
# vexpress-a15 # Create the disk image qemu-img create Fedora-QEMU-A15-armhfp-20-1-sda.raw $SIZE #add a size EG 8G # retrieve DTB wget http://download.fedoraproject.org/pub/fedora/linux/releases/20/Fedora/armhfp/os/images/pxeboot/dtb/vexpress-v2p-ca15-tc1.dtb # Begin Install sudo virt-install --name Fedora-QEMU-A15-armhfp-20-1-sda \ --ram 2048 \ --arch armv7l \ --machine vexpress-a15 \ --location=http://download.fedoraproject.org/pub/fedora/linux/releases/20/Fedora/armhfp/os/ \ --disk Fedora-QEMU-A15-armhfp-20-1-sda.raw \ --extra-args="console=ttyAMA0 rw" \ --os-variant fedora20 \ --graphics none \ --boot dtb=`pwd`/vexpress-v2p-ca15-tc1.dtb # vexpress-a9 # Create the disk image sudo qemu-img create Fedora-QEMU-A9-armhfp-20-1-sda.raw $SIZE #add a size EG 8G # retrieve DTB wget http://download.fedoraproject.org/pub/fedora/linux/releases/20/Fedora/armhfp/os/images/pxeboot/dtb/vexpress-v2p-ca9.dtb # Begin Install sudo virt-install \ --name Fedora-QEMU-A9-armhfp-20-1-sda \ --ram 1024 \ --arch armv7l \ --machine vexpress-a9 \ --location=http://download.fedoraproject.org/pub/fedora/linux/releases/20/Fedora/armhfp/os/ \ --disk Fedora-QEMU-A9-armhfp-20-1-sda.raw \ --extra-args="console=ttyAMA0 rw" \ --os-variant fedora20 \ --graphics none \ --boot dtb=`pwd`/vexpress-v2p-ca9.dtb
Complete a Text or VNC Installation choosing a software packge and partitioning scheme (note when choosing LVM or BTRFS you will need to edit the kernel arguments appropriately). The system will attempt to reboot but fail until the next step is completed.
Extracting Files from the Disk Image
Once completed you will need to copy the kernel and initramfs and DTB from the disk image for use with Virt-Manager or command line.
# vexpress-a15 sudo virt-copy-out -a Fedora-QEMU-A15-armhfp-20-1-sda.raw /boot/{vmlinuz-3.11.10-301.fc20.armv7hl+lpae,initramfs-3.11.10-301.fc20.armv7hl+lpae.img} . sudo virt-copy-out -a Fedora-QEMU-A15-armhfp-20-1-sda.raw /boot/dtb-3.11.10-301.fc20.armv7hl+lpae/dtb-3.11.10-301.fc20.armv7hl/vexpress-v2p-ca15-tc1.dtb . # vexpress-a9 sudo virt-copy-out -a Fedora-QEMU-A9-armhfp-20-1-sda.raw /boot/{vmlinuz-3.11.10-301.fc20.armv7hl,initramfs-3.11.10-301.fc20.armv7hl.img} . sudo virt-copy-out -a Fedora-QEMU-A9-armhfp-20-1-sda.raw /boot/dtb-3.11.10-301.fc20.armv7hl/vexpress-v2p-ca9.dtb .
Booting the New System
Once the files have been extracted you can choose to use the system on commandline or with Virt-Manager. Virt-Manager offers additional flexibility and is recommended for most users.
Virt-Manager
- Open Virt-Manager and select the image created above. Click on "Edit-> Virtual Machine Details -> View -> Details"
- Under "Boot Options", add the kernel, initramfs and dtb extracted above (the DTB should point to the correct path)
- For kernel args add (note- if custom partitioning was used for the installation you will to make adjustments to 'root='):
# If you selected Standard Partitioning console=ttyAMA0,115200n8 rw root=/dev/vda3 rootwait # If you selected LVM console=ttyAMA0,115200n8 rw root=/dev/mapper/fedora-root rootwait
- When using the A15 DTB and LPAE kernel it is possible to use more RAM (12GB tested).
Known Issues when using QEMU
- After updating the kernel you will need to extract the kernel, initramfs and dtb files and update the paths used in Virt-Manager as described above.
Resize the Root Filesystem
By default the root partition should be re-sized to fill the media in use on first boot. To use this additional space run:
resize2fs /dev/sda3
Calxeda EnergyCore (HighBank and Midway)
Fedora 20 for ARM includes support for systems that are able to perform a network installation using a kickstart, including enterprise hardware such as the Highbank and Midway processors from Calxeda. A working kickstart can be found here. Note the same kickstart can be used interchangeably on Highbank and Midway.
For more detailed instructions on setting this up, please visit this page.
pcDuino3 Nano
Installing Fedora 20 on the pcDuino3 Nano is possible, but it needs a little love and attention.
- Create a bootable micro-sd card on pcDuino using board-config.sh
- On another linux machine, repartition the card, leaving partition 1 alone, and partition 2 has to be /
- Format micro-sd card partition 2 as ext4, and mount it.
- Download your favorite VFAT arm image from Fedora Arm Image - and decompress it.
- Extract the / filesystem from your image onto your mounted partition using virt-tar-out (from libguestfs-tools)
virt-tar-out -a Fedora-Minimal-VFAT-armhfp-20-1-sda.raw / – | (cd /media/sdroot/ && tar xvf -)
- Edit the fstab, while still mounted. Only have /, and change the UUID to match the UUID of part 2
- Edit the passwd file so root can login without a password
- Remove the ‘x’ from the line beginning with ‘root’
- initial-setup crashes when it runs, so you have no way to log in if you don't do this.
- sync, remove micro-sd card from your linux machine, put it in you pcDuino, power on pcDuino.
- Detailed Instructions
Booting for the First Time
Initial-setup
- During the first boot the system will launch the 'initial-setup' utility. For graphical images this will occur on the display, for minimal images this will occur on the serial console. Failure to complete the initial-setup will prevent logging into the system. To log in to the root account without completing the initial-setup you will need to minimally edit '/etc/passwd' file and remove the 'x' from the line beginning with 'root' (this will allow you to log into the root account without entering a password).
Known Issues
- The Beaglebone Black will boot the Fedora 20 Beta VFAT images, however there is currently no USB. This is actively being worked on, if you would like to contribute please visit #fedora-arm on Freenode.
- The images include dracut-modules-growroot and cloud-utils-growpart which should automatically resize the root partition on first boot, due to a bug this does not occur. The work around is to resize the root partition using GParted or equivalent.
- Display will not work with Kernels 3.13+ - this is actively being worked on (BZ#1082815)
FAQ
QUESTION : How do I use Fedora ARM when I have no serial cable or display.
ANSWER: Though not recommended it is possible to use Fedora ARM without a serial cable or display. When doing so you may want to limit updates to reduce the possibility of not being able to boot. (This example is from a Fedora 19 system, you may need to adjust the mounts used).
USER= # your user account rm /run/media/$USER/__/etc/systemd/system/graphical.target.wants/initial-setup-graphical.service rm /run/media/$USER/__/etc/systemd/system/multi-user.target.wants/initial-setup-text.service mkdir /run/media/$USER/__/root/.ssh/ cat /home/$USER/.ssh/id_rsa.pub >> /run/media/$USER/__/root/.ssh/authorized_keys chmod u=rwX,o=,g=-r /run/media/$USER/__/root/.ssh/
Give the system a few minutes to boot, when it obtains an IP you should be able to ssh to the root account.